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ABSTRACT 
In this paper, a controller featuring cross-coupled control 

and iterative learning control schemes is designed and 

implemented on a modular two-axis positioning system in order 

to improve both contour and tracking accuracy. Instead of 

using the standard contour estimation technique proposed with 

the variable gain cross-coupled control, a computationally 

efficient contour estimation technique is incorporated with the 

presented control design. Moreover, implemented contour 

estimation technique makes the presented control scheme more 

suitable for arbitrary nonlinear contours. Effectiveness of the 

control design is verified with simulations and experiments on a 

two-axis positioning system. Also, simulations demonstrating 

the performance of the control method on a three-axis 

positioning system are provided. The resulting controller is 

shown to achieve nanometer level contouring and tracking 

performance. Simulation results also show its applicability to 

three-axis nano-positioning systems. 

INTRODUCTION 
Increasing demand for micro/nano-technology related 

equipment resulted in a growing interest for precision 

positioning. Multi-axis precision positioning is required in 

micro/nano-scale manufacturing and assembly, optical 

component alignment systems, scanning microscopy 

applications, nano-particle placement applications, cell/tissue 

engineering and etc. [1-3]. Most of the time, these applications 

require both high contour and tracking accuracy. 

In tracking control, the objective is moving along a desired 

trajectory. Although almost all systems employ feedback as a 

part of tracking control, substantial improvement of tracking 

accuracy is achieved by the addition of feed forward control 

methods. In literature, several feed forward control schemes 

have been shown to improve tracking accuracy such as zero 

phase error tracking control (ZPETC) [4-6], feed forward 

friction compensation [7, 8] and iterative learning control (ILC) 

[9, 10]. According to Tomizuka [4], tracking performance of a 

ZPETC system is sensitive to variations in plant parameters and 

modeling errors since ZPETC design is based on pole/zero 

cancellation and phase cancellation. Moreover, friction 

compensation techniques generally incorporate a system 

identification process that should be repeated if system 

parameters change. On the other hand, Tan et al. [9] claims that 

specifying a plant model for ILC via zero phase filtering is not 

necessary considering the principle of self-support that is 

argued in [11] because the stored control signals reflect the 

plant characteristics. In other words, ILC can improve tracking 

performance of a system even the plant structure and 

nonlinearities are unknown [12]. Yet, the system should execute 

the same task repetitively to be able to implement an ILC 

scheme.  

Generally, improving tracking accuracy of each individual 

axis also increases contouring accuracy of the multi-axis 

system. However, in some cases, decreasing the tracking error 

may not decrease the contour error; it may even deteriorate the 



  

contouring performance [13]. Hence, control structure should 

be designed considering not only tracking error but also contour 

error in order to achieve high accuracy in both. Koren [14] 

proposed the cross-coupled control (CCC) that focuses on 

eliminating contour error rather than individual axes errors. 

This method is proven to reduce contour error significantly. 

Since the introduction of CCC, it has been modified and 

combined with different control techniques. Some examples are 

observer-based CCC [15], cross-coupled model reference 

adaptive control [16], cross-coupled iterative learning (CCILC) 

[10], CCC with disturbance observer and ZPETC [6], CCC 

with friction compensation [8] and CCC with ILC [10, 17]. 

Since CCC based control schemes require contour error as 

the control parameter, there is a need for construction of a 

contour error model in real time. Contour error is defined as 

distance between actual position and the nearest position on the 

contour [18]. Although, contour error can be calculated for 

linear contours, this calculation is very complicated for 

nonlinear contours, especially during the operation. Hence, 

some approximations have been used to calculate a nonlinear 

contour error. Koren [13] suggested circular contour 

assumption. Then, Yeh and Hsu [18] proposed a method to 

approximate contour error as the vector from the actual position 

to the nearest point on the line that passes through the reference 

position tangentially. As the authors mentioned, although 

circular contour assumption works well for biaxial motion 

systems, it is difficult to apply on multi-axis systems.  

The work presented aims to provide an improved method 

for precision motion control featuring CCC and ILC. Although 

CCC and ILC have been used together in [10] and [17] for 

contours combining lines and circles, the new method also 

benefits from the contouring error estimation vector approach. 

In this way, the new method is computationally more efficient, 

more suitable for coupling gain calculations of arbitrary 

nonlinear contour and easier to implement on multi-axis 

systems. Moreover, for the best of our knowledge, this is the 

first time CCC and ILC is used together to achieve nanometer 

level precision and implemented on a three-axis system.   

SYSTEM SETUP 
The two-axis positioning system is constructed by 

assembling two modular single-axis stages perpendicularly as 

in Fig. 1. A modular single-axis stage is designed with a 

stationary base and a moving slider that are connected to each 

other via cross-roller linear bearings. The stage is actuated by a 

brushless permanent magnet linear (PMLM) motor with 

120mm travel range whereas the position feedback is taken 

from an incremental linear encoder. The linear encoder has an 

optical scale with four micrometer grating in pitch leading one 

micrometer resolution. Yet, the encoder resolution is increased 

to 25 nanometers using an interpolation technique. Details of 

interpolation procedure can be found in [19].   

Idealized dynamic model of a single-axes linear stage is 

given in Fig. 2 where R is linear motor resistance, L is linear  

 

FIGURE 1. TWO-AXIS MODULAR POSITIONING SYSTEM 

motor inductance, KBEMF is back electromotive constant, Kforce is 

force constant, m is sliding mass, b is viscous friction, e is 

linear motor input voltage, Kamp is amplifier gain and i is linear 

motor current.  In the dynamic model, ripple forces of the 

PMLM are neglected and linear bearings are modeled as 

viscous friction component. From the dynamic model, 

mathematical model of the linear stage is found as in Eq. (1). 
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After the system is modeled, a suitable PID feedback 

controller is obtained using traditional methods.  

 

FIGURE 2. DYNAMIC MODEL OF A SINGLE-AXIS STAGE 

CONTROL DESIGN 
In this paper, an improved method based on CCC and ILC 

which benefits from the contouring error vector approach has 

been presented. Next two subsections will briefly describe ILC 

scheme used in this work and CCC. Moreover, contour 

estimation approaches will be explained together with CCC. 

The last subsection will mention the insight of the improved 

method. 

Iterative Learning Control (ILC) via Zero Phase 
Filtering 

ILC is a technique for improving the transient response of 

a system that operates repetitively. ILC can often be used to 

achieve perfect tracking, even when the model is uncertain or 

unknown and there is no information about the system structure 

and nonlinearity [12]. ILC based on zero phase filtering is a 

practical and efficient implementation of ILC [9].  



  

Block diagram of ILC via zero phase filtering for an 

individual axis is given in Fig. 3. In the diagram, superscript i is 

iteration number whereas uff
i 

and ufb
i
 are feed forward and 

feedback control signals at i
th

 iteration. The feed forward 

control signal for i
th

 iteration is calculated using the feed 

forward and feedback control signals of the previous iteration 

that are shown as uff
i-1 

and ufb
i-1

 respectively. The learning 

update law can be given as in Eq. (2) [9].  
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where k is the time index, γ is the learning gain and M is the 

length index of zero phase filter. Some guidelines for the design 

of parameters γ and M can be found in [9]. 

 

FIGURE 3. BLOCK DIAGRAM OF ILC VIA ZERO PHASE 
FILTERING WITH FEEDBACK CONTROLLER 

Cross-Coupled Control (CCC) 
Cross-coupled control is a special type of multi input multi 

output (MIMO) control which aims to decrease the contour 

error. Block diagram of this control scheme is given in Fig. 4. 

In the block diagram, Cx and Cy are coupling gains whereas ε, 

ex, ey are the contour error, x-axis tracking error and y-axis 

tracking error respectively. As can be observed form Fig. 4, 

contour error is obtained through the equation 

 
x x y y
C e C e     (3) 

Although CCC is first introduced with constant gains in 

[14], the term CCC is generally used for CCC with variable 

coupling gains as proposed in [13]. For a nonlinear contour, 

calculation of these coupling gains is very complicated. 

Therefore, some contour error approximations are needed to 

simplify the coupling gain computation. For this purpose, 

Koren [13] proposed circular contour assumption. Then, Yeh 

and Hsu [18] presented contour error vector approach. The next 

two parts will briefly describe these approaches. 

Circular Contour Assumption. In this approach any 

arbitrary contour is separated into parts with radius of curvature 

ρ and these parts are approximated by circles. Since contour 

error for a circular contour is the difference between the  

 

FIGURE 4. BLOCK DIAGRAM OF CCC 

distance from the actual position to the center of the circle and 

radius of the circle, contour error for an arbitrary contour can 

be written as 

 
2 2
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where (x0, y0) and (x, y) denote center of the curvature and 

actual position, respectively. Expressing the actual position 

with respect to reference position and axial tracking errors (ex, 

ey) and using Taylor expansion, approximated contour error 

becomes 
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where θ is traversal angle of motion. In Eq. (5), ρ becomes 

infinity for linear contours. 

 

Contouring Error Vector Approach. Contour error 

vector approach can be explained through the geometrical 

relations in the multi-axis motion control system given in Fig. 

5. In the figure, 𝑒 is tracking error vector, 𝜀̂⃗ is estimated contour 

error vector, 𝜀 is contour error vector, 𝑡 is normalized tangential 

vector, 𝑛⃗⃗⃗ ⃗ is normalized normal vector, P is actual position and R 

is reference position. In this approach, contouring error 𝜀 is 

defined as the vector from the actual position to the nearest 

point on the line that passes through the reference position 

tangentially with direction 𝑡  [18]. This approach estimates 

contour error vector very closely when tracking error is small 

enough. Looking at Fig. 5, 𝜀̂⃗ is equal to 〈�⃗� ,  �⃗⃗⃗�〉 where 〈. , . 〉 is 

inner product operator. Hence, relation between 𝜀̂⃗  and 𝑒 can be 

obtained using inner product. Furthermore, the contour error is 

calculated as |𝜀̂⃗| =∑ 𝐶𝑖𝑒𝑖𝑖  (i=x, y, z …) where Ci is coupling gain 

and ei is the corresponding axial tracking error. Considering 

these two representations of estimated contour error vector, 

cross coupling gains (Cx, Cy, Cz …) in terms of normalized 

normal vector ( 𝑛⃗⃗⃗ ⃗ = [nx ny nz …]
T 

)are found as Ci = ni (i=x, y, z, 

…).  



  

Although two different approaches give similar results in 

terms of contouring accuracy, contour error vector method has 

several advantages over the circular contour assumption. 

Firstly, it is computationally more efficient. Moreover, with 

contour error approach, coupling gains can be computed easier 

for an arbitrary contour. Also, implementation of circular 

contour approach to a multi-axis system is difficult [18].  

 

FIGURE 5. GEOMETRICAL RELATIONS OF CONTOUR 
ERROR (ADOPTED FROM [18]) 

The Improved Method 
The presented work is a part of project that aims to design 

a controller for a three-axis positioning system with nanometer 

level tracking and contouring performance. The three-axis 

positioning system is designed such that three modular single-

axis stages will be assembled on top of each other to build it. 

As a logical step to validate our multi axis modular control 

approach, a two-axis positioning system has been assembled as 

shown in Fig 1. This paper focuses on real time control of two-

axis system; however the feasibility study of three-axis 

positioning system is given to illustrate the expected results in 

the 3 axis system currently under development. The control 

system is intended to be modular considering being able to 

interchange the stages without changing the control system. For 

modularity concerns, ILC is chosen for improving tracking 

performance since controller structure does not change with 

changes in plant model structure and parameters. Moreover, 

contouring error vector method chosen to be used with CCC 

since it is computationally more efficient. As mentioned before, 

encoders of the positioning system have been interpolated to 

achieve nanometer resolution. This procedure is accomplished 

without any extra hardware. Due to this fact, there is a trade of 

between resolution of the encoders and the computational effort 

in the control loop. Therefore, it is aimed to minimize 

computational effort in the control loop to maximize encoder 

resolution. Using contouring error vector technique also makes 

the control method more suitable to implement on three-axis 

systems and to operate with arbitrary nonlinear contours. To 

sum up, a control method featuring CCC and ILC via zero 

phase filtering as in Fig. 6 has been developed incorporating the 

contouring error vector estimation technique. 

SIMULATION ANALYSIS 
In order to verify the performance the two-axis positioning 

system, simulation analysis has been provided. Moreover, 

feasibility study of the control method on three-axis positioning 

system is conducted. In the simulations, velocity profiling has 

been used to generate individual-axis reference trajectories. 

Generic s-curve method is employed for this purpose.  

Simulations in Two-axis 
Two-axis positioning system has been simulated with a 

nonlinear contour. In the proposed approach, it is straight 

forward to find coupling gains when the equation of the curve 

is known since coupling gains are just elements normal vector 

elements of the contour.  Plant model is simulated with 

feedback control (FB), feedback control with cross-coupled 

control (FB&CCC), feedback control with iterative learning 

control (FB&ILC) and feedback control with cross-coupled  

FIGURE 6. BLOCK DIAGRAM OF THE PRESENTED CONTROL METHOD 



  

TABLE 1. TWO-AXIS SYSTEM - SIMULATION RMS ERROR 
VALUES FOR THE NONLINEAR CONTOUR 

Control Method 

RMS 

Error of 

X-Axis 

[nm] 

RMS 

Error of 

Y-Axis 

[nm] 

RMS 

Contour 

Error  

[nm] 

FB 11.30 111.27 39.04 

FB & CCC 15.42 110.65 32.36 

FB & ILC 3.47 2.17 2.73 

FB & CCC & ILC 1.09 2.11 0.78 

 

 

FIGURE 7. TWO-AXIS SYSTEM SIMULATION - RMS ERROR 
VALUES FOR THE NONLINEAR CONTOUR 

 

FIGURE 8. SIMULATION OF TWO-AXIS SYSTEM FOR THE 
NONLINEAR CONTOUR 

control and iterative learning control (FB&CCC&ILC). Effects 

of all simulated control schemes on the performance are 

summarized in Tab. 1 and Fig. 7. In the table and figure, root 

mean square (RMS) of the error signals has been used. It can be 

observed that combining ILC and CCC with FB gives the best 

results as expected. This combination benefits from both 

tracking performance improvements of ILC and contouring 

performance improvements of CCC. For the designed control 

system, ILC convergence has been achieved around 20 

iterations. In other words, there is no significant decrease in the 

errors after 20 iterations. Hence, FB&ILC and FB&CCC&ILC 

simulation results are recorded after 20 iterations. 

The nonlinear contour used in simulations is given in Fig. 

8. In the figure, the zoomed view is taken from the part with a 

sharp turn that is shown with the box on the original contour 

because contour tracking is more difficult on sharp turns. As 

can be seen in zoomed view of Fig.8, contouring performance 

of the system for the nonlinear contour is improved 

significantly when the proposed method (FB&CCC&ILC) is 

used instead of only feedback (FB) control.  

Simulations in Three-axis 
Simulations and experiments have been conducted on the 

two-axis system to show the effectiveness of the proposed 

system. However, in this work, it is also claimed that the 

proposed method can be easily implemented on a three-axis 

system. In order to demonstrate it, proposed method is 

simulated for three axis system. Reference contour is a 45
o
 

inclined circle with 7 micrometers radius as given in Fig. 10. As 

mentioned previously, coupling gains can be obtained from the 

normal vector of the contour. Using that approach coupling 

gains have been found without too much computational effort. 

In the zoomed view of Fig. 10, it has been observed that the 

proposed method has very good tracking performance 

compared with the feedback control. Moreover, reference 

contour and the resulting contour of the FB&CCC&ILC control 

is almost coincident. This also confirms the very small RMS 

tracking errors and RMS contour error observed in Tab. 2.  

 

FIGURE 9. SIMULATION OF THREE-AXIS SYSTEM FOR THE 
NONLINEAR CONTOUR 

Simulation results of three-axis system given in Tab. 2 and 

Fig. 10. Looking at the results, it is observed that contour error 

decreases with FB&CCC whereas individual axis errors may 

deteriorate. Yet, when the ILC is also added to the control 

scheme both individual and contour errors decrease 

significantly. For these simulations, combined CCC and ILC 

gives the best contour and tracking accuracy. Moreover, it can 

also be observed that FB&ILC control decreases individual axis 

tracking errors by 63% - 85%- 63%, contour error 46%. When 

CCC is added to FB&ILC controls contour error decreases 72% 

and individual tracking errors decrease by %36 – 43% - %63. 

This observation confirms ILC is especially efficient in tracking 

control whereas CCC is especially effective for contour control. 
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Moreover, combining both controllers results in a controller 

which is effective for both tracking and contouring.  

EXPERIMENTAL RESULTS 
Velocity profiling with s-curve is used to obtain individual 

axis trajectories in the experimental results section. For 

experimental results, the same contour with same velocity 

profiling designed for simulations part is used. Contour 

tracking of the two-axis system with only feedback (FB) 

control and feedback control with CCC and ILC 

(FB&CCC&ILC) is given in Fig. 11. Looking at the zoomed 

view, it is obvious that presented control design improved 

contouring performance considerably. When Fig. 7 and Fig.11 

is compared, it should be noted that simulations and 

experiments give similar behavior such as deteriorated contour 

control just after the sharp turn. Moreover, FB&CCC&ILC 

system gives better contouring result than FB. Yet, in 

experimental results, FB&CCC&ILC design does not improve 

the contouring performance as much as simulation. This result 

is reasonable considering unmodeled system dynamics or 

disturbances. 

TABLE 2. THREE-AXIS SYSTEM SIMULATION - RMS ERROR 
VALUES FOR THE NONLINEAR CONTOUR 

Control 

Method 

RMS 

Error of 

X-Axis 

[nm] 

RMS 

Error of 

Y-Axis 

[nm] 

RMS 

Error of 

Z-Axis 

[nm] 

RMS 

Contour 

Error  

[nm] 

FB 235.87 144.26 235.87 86.07 

FB & CCC 268.06 177.19 209.68 59.12 

FB & ILC 33.07 51.44 33.07 46.29 

FB & CCC 

& ILC 
21.22 29.78 12.29 13.55 

 

 

FIGURE 10. THREE-AXIS SYSTEM SIMULATION - RMS 
ERROR VALUES FOR THE NONLINEAR CONTOUR 

Experiments are conducted on the system with feedback 

control (FB), feedback control with cross-coupled control  

(FB&CCC), feedback control with iterative learning control 

(FB&ILC) and feedback control with cross-coupled control and 

iterative learning control (FB&CCC&ILC). FB&ILC and 

FB&CCC&ILC experimental results are recorded after 20 

iterations. Variation of RMS single-axis errors and RMS 

contour error with the different control schemes is given in 

Fig.12 and Tab.3. Looking at Tab. 3, it can be observed that 

FB&CCC system decreases contour error significantly whereas 

changes in axial errors are not as significant. Similarly, 

FB&ILC system decreases axial tracking errors more 

effectively than contour error as expected. Best tracking and 

contouring performance is obtained for FB&CCC&ILC system 

as for the simulation case. All axial tracking errors and contour 

error is improved around 50%. This improvement is higher for 

simulations however this is acceptable since simulations are 

performed for idealized systems in idealized conditions. 

 

FIGURE 11. EXPERIMENTAL RESULTS OF TWO-AXIS 
SYSTEM FOR THE NONLINEAR CONTOUR 

TABLE 3. TWO-AXIS SYSTEM - EXPERIMENTAL RMS 
ERROR VALUES FOR THE NONLINEAR CONTOUR 

Control Method 

RMS 

Error of 

X-Axis 

[nm] 

RMS 

Error of 

Y-Axis 

[nm] 

RMS 

Contour 

Error  

[nm] 

FB 46.84 113.05 57.08 

FB & CCC 42.06 94.66 43.49 

FB & ILC 25.81 79.14 39.33 

FB & CCC & ILC 21.28 66.69 27.52 

 

FIGURE12. TWO-AXIS SYSTEM - EXPERIMENTAL RMS 
ERROR VALUES FOR THE NONLINEAR CONTOUR 
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CONCLUSION AND FUTURE WORK 
In this paper, a new method which is computationally more 

efficient, more suitable for coupling gain calculations of 

arbitrary nonlinear contour and easier to implement on multi-

axis systems is presented. Tracking and contouring 

performance of the method on a nonlinear contour is verified 

through simulations and experiments achieving nanometer level 

accuracy for the two-axis system. In the experiments, RMS 

error of x-axis, RMS error of y-axis and RMS contour error of 

the two-axis system is decreased to 21nm, 66nm and 27nm, 

respectively. Considering encoder resolution, the smallest value 

encoder can detect, is 25nm, resultant positioning is very 

accurate. Having RMS error less than the resolution means that 

trajectory is followed very closely and error value has been 

zero in some parts of the motion. Furthermore, a feasibility 

study of the presented method on three-axis system is 

conducted and results are promising. In future, real time 

implementation of the method on three-axis system will be 

practiced. 

ACKNOWLEDGMENTS 
This research is sponsored by Scientific and Technical 

Research Council of Turkey (TUBITAK) through Project No: 

110M251. The authors would like to thank undergraduate 

students Oytun Ugurel and Ersun Sozen for their support during 

computer aided design and drafting of the positioning system. 

Authors would also like to thank Dr. Sinan Filiz for sharing his 

experience in precision positioning systems. 

REFERENCES 
[1] Manske, E., Hausotte, T., Mastylo, R., Machleidt, T., 

Franke, K., and Jager, G., 2007. “New Applications of the 

Nanopositioning and Nanomeasuring Machine by Using 

Advanced Tactile and Non-tactile Probes”. Measurement 

Science and Technology, 18(2), pp. 520-527. 

[2] Lihua, L., Yingchun, L., Yongfeng, G., and Akira, S., 2010. 

“Design and Testing of a Nanometer Positioning System”. 

Journal of Dynamic Systems, Measurement, and Control, 

132(2), pp. 02011-6. 

[3] Pang, C. K., Guo, G., Chen, B. M., and Lee, T. H., 2006. 

“Self-sensing Actuation for Nanopositioning and Active-

mode Damping in Dual Stage HDDs”. IEEE/ASME 

Transactions Mechatronics, 11(3), pp. 328-338. 

[4] Tomizuka M., 1987. “Zero Phase Error Tracking Algorithm 

for Digital Control”. J. Dyn. Sys., Meas., Control, 109(1), 

pp. 65–68. 

[5] Hsu, P., Houng, Y., and Yeh, S., 2001. “Design of an 

Optimal Unknown Input Observer for Load Compensation 

in Motion Systems”. Asian Journal of Control, 3(3), pp. 

204–215. 

[6] Qing, L., Tai-yong, W., Jing-chuan, D., Yong-xiang, J., and 

Bo, L., 2010. “Applications of position controller for CNC 

machines based on state observer and Cross Coupled 

Controller”. 2010 International Conference on Computer, 

Mechatronics, Control and Electronic Engineering 

(CMCE), IEEE, pp. 593–596. 

[7] Tomizuka, M.,2007. “Friction Compensator for Feed Drive 

Systems Consisting of Ball Screw and Linear Ball Guide”. 

Proceedings of the 35th International MATADOR 

Conference, pp311-314. 

[8] Wang, L., Lin, S., and Zheng, H., 2011. “Precision Contour 

Control of XY Table Based on LuGre Model Friction 

Compensation”. 2011 2nd International Conference on 

Intelligent Control and Information Processing (ICICIP), 

IEEE, pp. 1124–1128. 

[9] Tan, K. K, Dou, H., Chen, Y., and Lee, T. H., 2001. “High 

Precision Linear Motor Control via Relay-Tuning and 

Iterative Learning Based on Zero-Phase Filtering”. IEEE 

Transactions on Control Systems Technology, 9(2), pp. 

244–253. 

[10]  Barton K. L., and Alleyne A. G., 2008. “A Cross-Coupled 

Iterative Learning Control Design for Precision Motion 

Control”. IEEE Transactions on Control Systems 

Technology, 16(6), pp. 1218–1231. 

[11]  Novakovic, Z., 1992. “The Principle of Self Support in 

Control Systems”. Vol.8 of Studies in Automation and 

Control. Elsevier, Amsterdam, Netherlands. 

[12]  Ahn, H. S., Chen, Y. Q., and Moore K. L., 2007. “Iterative 

Learning Control: Brief Survey and Categorization”. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C: 

Applications and Reviews, 37(6), pp. 1099–1121. 

[13]  Koren, Y., and Lo, Ch. Ch., 1991. “Variable-Gain Cross-

Coupling Controller for Contouring”. CIRP Annals - 

Manufacturing Technology, 40(1), pp. 371–374. 

[14]  Koren, Y., 1980. “Cross-Coupled Biaxial Computer 

Control for Manufacturing Systems”. J. Dyn. Sys., Meas., 

Control, 102(4), pp. 265–272. 

[15]  Naumovic, M., and Stojic, M., 1997. “Design of The 

Observer-Based Cross-Coupled Positioning Servodrives”. 

Proceedings of the IEEE International Symposium on 

Industrial Electronics, ISIE ’97, IEEE, pp. 643–648 vol.2. 

[16] Chuang, H. Y., and Liu, C. H., 1990, “A Model-Referenced 

Adaptive Control Strategy for Improving Contour 

Accuracy of Multi-axis Machine Tools”. Conference 

Record of the 1990 IEEE Industry Applications Society 

Annual Meeting, IEEE, pp. 1539–1544 vol.2. 

[17] Li, H. S., Zhou, X., and Chen, Y., 2005. “Iterative Learning 

Control for Cross-Coupled Contour Motion Systems”. 

Mechatronics and Automation, 2005 IEEE International 

Conference, IEEE, pp. 1468–1472 Vol. 3. 

[18]  Yeh, S. S., and Hsu, P. L., 2002. “Estimation of the 

Contouring Error Vector for The Cross-Coupled Control 

Design”. IEEE/ASME Transactions on Mechatronics, 7(1), 

pp. 44–51. 

[19]  Ulu, E., Gecer Ulu, N., and Cakmakci, M., 2012. 

“Adaptive Correction and Look-up Table Based 

Interpolation of Quadrature Encoder Signals”, ASME 

Dynamic Systems and Control Conf. (DSCC2012), Ft. 

Lauderdale, FL, Oct.  

 


