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Additively manufactured objects often exhibit directional de-
pendencies in their structure due to the layered nature of the
printing process. While this dependency has a significant
impact the object’s functional performance, the problem of
finding the best build orientation to maximize structural ro-
bustness remains largely unsolved. We introduce an opti-
mization algorithm that addresses this issue by identifying
the build orientation that maximizes the factor of safety of
an input object under prescribed loading and boundary con-
figurations. First, we conduct a minimal number of physical
experiments to characterize the anisotropic material prop-
erties. Next, we use a surrogate-based optimization method
to determine the build orientation that maximizes the mini-
mum factor safety. The surrogate-based optimization starts
with a small number of finite element solutions correspond-
ing to different build orientations. The initial solutions are
progressively improved with the addition of new solutions
until the optimum orientation is computed. We demonstrate
our method with physical experiments on various test mod-
els from different categories. We evaluate the advantages and
limitations of our method by comparing the failure charac-
teristics of parts printed in different orientations.

1 Introduction
There is a growing interest in additive manufacturing

(AM) due to its applicability to complex geometries, rapid
design-to-fabrication turnaround, and its widening spectrum
of material choice, making it suitable in a myriad of engi-
neering applications [1–6]. In the context of structural and
geometric design, recent works have investigated automatic
techniques to achieve prescribed functions such as design-
ing for desired deformations [7, 8], designing for prescribed
appearances [9, 10], balancing models [11] and generating
spinnable objects [12].

The layered nature of AM has major implications on
the resulting objects. To date, there have been many studies
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highlighting the impact of build orientation (i.e., how the part
is oriented in the print workspace) on aspects such as surface
quality, the amount of required support material, geometric
accuracy, build time, and overall fabrication cost [13–16].
However, the build orientation has a major impact on the
structural properties of additively manufactured parts. This is
commonly manifested in the form of anisotropically printed
objects, making structural performance highly dependent on
the build orientation. While this intricacy has been observed
and experimentally demonstrated in a limited fashion, to
date, no attempts have been made to engineer its impact to
improve structural robustness.

In this work, we introduce a new build orientation se-
lection algorithm for polymer-based AM processes that aims
to maximize an input object’s resistance to failure under pre-
scribed external loads. We define an increased resistance to
failure as one that increases the direction-dependent material
yield strength relative to the stresses generated within the ob-
ject. We thus formulate a new build orientation optimization
problem where the optimal orientation is achieved by maxi-
mizing the minimum factor of safety observed in the object.
The problem, however, is difficult to solve using conven-
tional gradient-based methods. This is because the build ori-
entation impacts several structural parameters including the
elastic moduli, the yield strengths, and the material’s Pois-
son’s ratios. Additionally, unless the domain is particularly
simple, where appropriate analytical functions can be uti-
lized, the relationship between the build orientation and the
resulting stress tensor field is difficult to establish in closed
form. This difficulty makes the gradient and the Hessian of
the objective function very difficult to precompute for arbi-
trary geometries and loading configurations.

On the other hand, a brute force approach (e.g., uniform
parameter sweep) will typically require a large number of fi-
nite element (FE) simulations to appropriately cover the de-
sign space, which can be computationally prohibitive. To ad-
dress this challenge, we use a surrogate-based optimization
method that starts with a small number of FE simulations for



Fig. 1. Our approach takes as input a 3D model of an object with the corresponding loading/boundary configurations and anisotropic
(orthotropic) material properties, then calculates an optimum build orientation that maximizes the factor of safety (FS). The build orientation is
defined by three Euler angles [a,b,g]. A surrogate model between the candidate orientations and the objective function is constructed. The
surrogate model is progressively improved with the addition of new candidate orientations until the optimal orientation is found.

various build orientations to model the design space. Then,
the initial surrogate model is iteratively improved with the
addition of new evaluation points until the optimum orienta-
tion is found. In each iteration, the functional form of the sur-
rogate model enables a gradient-based search on this proxy
model, thereby accelerating the optimization process.

Our optimization algorithm uses an orthotropic material
model to establish the compliance matrix. To identify the
parameters of this matrix, we perform a set of physical ex-
periments on a small set of test specimens that are printed
using the target object’s material and print settings (Fig. 1).
This choice enables the process and environment dependent
properties to be accounted for during our solutions.
Contributions. Our primary contributions are as follows:

1. A novel build orientation selection algorithm for AM
that maximizes the minimum factor of safety under pre-
scribed loading and boundary conditions.

2. A surrogate-based optimization approach that mini-
mizes the number of FE simulations.

3. A framework to experimentally determine the process
dependent anisotropic material properties.

2 Related Work
There is a growing interest in AM technologies in the

fields of computational design, process design and material
science. Here, we focus on the studies that highlight the
directional dependencies in AM, computational design with
structural concerns and build orientation selection for AM.

2.1 Directional Dependencies
The most commonly studied effects of print-induced

anisotropy include dimensional accuracy and surface rough-
ness [14, 17], build time and cost [15, 16], the amount
of support material [13, 18] and the mechanical properties
(e.g., strength, elastic modulus) [19, 20]. Most relevant to
our work, we focus on the studies examining the anisotropy
in the structural properties of AM parts.

Various studies have experimentally shown that 3D
printed parts exhibit directional dependencies in their me-
chanical properties. Ahn et al. [19] characterize the

anisotropic mechanical properties of ABS parts manufac-
tured using fused deposition modeling (FDM). Similarly, El-
Gizawy et al. [21] and Hill and Haghi [22] investigate the
mechanical properties of polyetherimide and polycarbonate
when used in FDM. Barclift and Williams [23] and Kesy and
Kotlinski [24] experimentally study the effects of process pa-
rameters on material properties in polyjet printing. Similarly,
Galeta et al. [25] study powder based AM. These exper-
imental studies demonstrate that AM induces a significant
structural anisotropy for many process and material combi-
nations. Moreover, these works have shown that the resulting
anisotropy can be represented very well using an orthotropic
material model.

Several computational methods have also been proposed
to address this problem. Hildebrand et al. [26] minimize the
directional bias by partitioning the model into parts and se-
lecting a build direction individually for each part. How-
ever, they investigate the geometric accuracy only. Zhou
et al. [27] take a worst-case analysis approach to identify the
structurally weak parts of a design where a constrained opti-
mization problem is solved to obtain the worst loading con-
figuration with the orthotropic material assumption. Umetani
and Schmidt [28] address the structural anisotropy in FDM
with the assumption that the vertical bonds between the lay-
ers are much weaker than the in-layer bonds. Based on this
assumption, a cross sectional heuristic analysis is formulated
to find an orientation that maximizes mechanical strength.
Our approach builds upon these prior works by enabling a
orthotropic material model with unique properties in each
of the three principal directions. Additionally, in our ap-
proach, we maximize the factor of safety by considering the
prescribed external loads and boundary conditions without
making simplifying assumptions about the analysis.

2.2 Structural Concerns
Several studies have recently focused on the compu-

tational design for AM addressing structural concerns. In
these studies, a common approach is to deform or modify
the initial design to overcome its structural problems. Luo
et al. [29] partition large objects into 3D printable smaller
parts where each partition’s impact on the overall structural



Fig. 2. Principal directions in the orthotropic material model (a) A
single layer in AM process where x and y are the in-plane principal
directions. (b) The layer accumulation (build) direction, z.

Fig. 3. Geometry a,b and material x,y coordinate frames. The top
row shows an example for the equivalent representations of the same
physical problem. The bottom row illustrates our case where there
are two distinct build orientations and separate FE simulations are re-
quired to obtain the stress information for each configuration. Hence,
while stress transformation formulas seem to be applicable here, they
are indeed not applicable in our problem.

robustness is evaluated using FE analysis, which informs the
strategy for subsequent partitions. Similarly, Stava et al. [30]
evaluate hand-held objects’ structural weakness using FE
analysis to determine parts of the designs that require thick-
ening, hollowing, or strut placement. Analysis is restricted
to boundary conditions representing gravity and gripping us-
ing two fingers at heuristically predicted locations. Based
on this analysis, several automatic shape modifications are
proposed.

Recent works have also focused on cost-effective 3D
printing strategies while still addressing structural concerns.
Wang et al. [31] replace the solid interior of the object with
a truss structure to reduce the amount of material used in
the printing process. Lu et al. [32] use a hollowing ap-
proach based on Voronoi diagrams to obtain lightweighted
structures that can sustain prescribed stresses.

In our approach, we preserve the input design and do
not perform shape modification. Instead, for an input design
with prescribed boundary conditions, we optimize the build
orientation to maximize the stress-based factor of safety in
the resulting fabricated object. However if needed, the above
cost-effective methods can be used as a pre-processing step
to reduce the amount of material used in AM.

2.3 Build Orientation
Although build orientation selection with respect to ge-

ometrical features is very well studied for AM applications,
there is only a limited amount of work that directly ad-
dresses structural concerns. Suh and Wozny [33] account

Fig. 4. Material characterization. (a) Print directions considered,
(b) experimental setup for tensile tests and (c) a typical stress-strain
curve showing a subset of the material properties to be extracted.

for the critical features (e.g., thin walls and slender protru-
sions) that need to be appropriately oriented due to poten-
tial failure problems. They use a purely geometric approach
to ensure that the critical features lie in the layer accumula-
tion direction and do not consider the loading conditions on
the designed object. In an inspiring work, Thompson and
Crawford [34] introduce a build orientation selection algo-
rithm that considers the load and boundary conditions to-
gether with the material properties. To this end, they use
the Tsai-Wu failure criterion to determine whether the object
is safe or unsafe for a candidate build orientation. However,
this binary objective only ensures safe orientations and does
not maximize the factor of safety. Umetani and Schmidt [28]
suggest the best build orientation for a given geometry by
analyzing the structural weakness at different cross-sections
assuming that the primary mode of loading is bending. The
part is oriented such that the weakest cross-sections are as
perpendicular as possible to the layer accumulation direction.
This approach assumes that the material behaves isotropi-
cally within a single layer, hence the in-layer orientation does
not affect mechanical strength.

Our approach is inspired by the studies presented in [34]
and [28] in that the actual loading conditions determine the
build orientation if the structural robustness is the main con-
cern. However, unlike [34], we maximize the mechanical
strength over the entire geometry instead of incorporating the
failure criterion as a constraint when assessing candidate ori-
entations. Moreover, our work differs from [28] in that we
do not assume in-layer isotropy and allow all modes of load-
ing configurations (bending, torsion, compression etc.) to be
jointly considered.

3 Preliminaries
We begin by introducing our material model, our FE

simulation infrastructure and the techniques to physically
characterize the anisotropy in 3D printed parts.



Fig. 5. Repeatability tests for (a) orientation 2, (b) orientation 5 and (c) the stress-strain curves for different build orientations shown in Fig. 4.

Table 1. Results of physical characterization tests for the three principal directions.

Principal
Directions

Young’s Modulus
[GPa]

Yield Strength [MPa]
(Tensile/Compressive)

Shear Modulus*
[GPa]

Shear Strength
[MPa]

Poisson’s
Ratio

x 1.16 35.86/52.46 0.51 4.38 0.09

y 1.05 25.52/37.63 0.28 4.38 0.37

z 0.52 8.77/13.58 0.30 4.38 0.31

* Determined analytically using [27].

3.1 Material Model and Analysis
We base our approach on an orthotropic material model

which is commonly used in AM due to the 3-orthogonal na-
ture of the print process. Figure 2 illustrates the three prin-
cipal directions with the coordinate frame x ? y ? z. Here, x
and y correspond to the orthogonal in-layer directions and z
corresponds to the layer accumulation direction.

In the orthotropic material model, a total of nine pa-
rameters need to be determined experimentally. These pa-
rameters are the Young’s moduli, shear moduli and Pois-
son’s ratios for the three principal directions. Additionally, to
compute the factor of safety, the tensile yield strength, com-
pressive yield strength and shear strength need to be deter-
mined experimentally for these principal directions. The or-
thotropic material model enables all such parameters to be
determined with a minimal number of tests using well estab-
lished metrology techniques including tensile, compressive
and shear tests. Further details of the material characteriza-
tion experiments are explained in Section 3.3.

3.2 Finite Element Analysis
We use FE simulations to calculate the stress tensor field

for a given geometry and boundary conditions. With the or-
thotropic material assumption, a new FE simulation is re-
quired for each candidate build orientation. Figure 3 illus-
trates this issue on a simple two dimensional example. For a
given geometry and boundary conditions, we assign a local
coordinate frame, a ? b (? c for 3D), which is attached to
the geometry. We also establish a global coordinate frame,
x ? y (? z for 3D) that represents the material orientation.

In this paper, we use a script based ANSYS Mechanical
Parametric Design Language (APDL) to run FE simulations
required in our optimization scheme. During optimization,

a new material coordinate frame is established that operates
on a fixed geometry, mesh, and boundary conditions. The
different build orientations are thus evaluated by adjusting
the material coordinate frame. After each FE simulation, the
computed stress tensor information is encoded in the geome-
try coordinate frame, thus a stress transformation is required
to evaluate the stress values in the material coordinate frame
where the structural properties are known. This transforma-
tion facilitates the factor of safety calculation at each element
in the domain as will be shown later.

3.3 Material Characterization
To demonstrate the integration of physical anisotropy

characterization into our optimization scheme, we use a
high-resolution (30µm vertical and 42µm lateral) Objet Con-
nex 350 multi-material 3D printing system. Thin layers of
photosensitive resins (30µm) are deposited onto a build tray
(350 mm x 350 mm x 200 mm) by inkjet printing. The de-
posited layer is then immediately cured using a UV light
source for photo-polymerization, which is coupled to the
print head and solidifies each liquid material layer. During
the curing process, a roller levels the liquid polymers making
the material immediately ready to be built upon with succes-
sive layers. The building process uses two kinds of material:
object (two different materials can be used and different dig-
ital materials can be obtained through a mixture of these ma-
terials) and support. It is possible to build the final product
with and without the support material around the features.

Using this setup, we print a test specimen in seven dif-
ferent orientations and perform a tensile test for each ori-
entation to reveal the directional dependency of the mate-
rial properties (Fig. 4). For each direction, we print three
copies of ASTM D638 standard tensile test specimen using



Fig. 6. Performance of our objective function. (a) Problem configuration. Elements with the lowest 300 safety factor values are highlighted
for the initial (b), and the optimized (c), build orientations.

VeroWhiteTMphotosensitive resin. For each specimen, we
conduct a tensile test using an INSTRON 4467 instrument
and two strain gauges mounted to the front and back faces of
the specimen to obtain the engineering stress-strain curves
for each specimen.

Figure 5(a) and (b) show the stress-strain curves for the
three identical specimens printed along directions 2 and 5
(see Fig. 4(a)), respectively. The results show that the stress-
strain curves of similarly oriented specimens behave simi-
larly up to their ultimate tensile strength. Indeed, the devi-
ation in the elastic moduli and yield strength values are less
than 3%. Thus, the material properties are consistent within
a given orientation. On the other hand, when the parts are
printed in different directions, significant differences are ob-
served in the material properties. Fig. 5(c) shows the stress-
strain curves for the specimens printed in the seven different
directions revealing the directional dependency of material
properties.

We extract the material properties required for our opti-
mization algorithm from the stress-strain curves. To this end,
the Young’s moduli and tensile yield strengths (0.2% strain
offset) as well as the Poisson’s ratios (the ratio between the
slopes of the stress-axial strain and stress-transverse strain)
are obtained for the directions of 1, 6, and 7 shown in
Fig. 4(a). These directions correspond to our standardized
principal directions and are listed in Tab. 1. Furthermore,
we perform compression tests on the standard test specimens
(ASTM D395) using an INSTRON 4469 compression in-
strument to obtain the compressive yield strengths shown in
Tab. 1. For the orthotropic material model, it is also neces-
sary to determine the shear related material properties. For
this, we calculate the required shear moduli using the ap-
proach in [27]. The corresponding shear strengths are as-
sumed to be 50% of the lowest yield strength value accord-
ing to the maximum shear theory [35] for conservative esti-
mates. However, shear strengths can also be experimentally
determined to enhance the precision of our approach without
loss of generality.

4 Build Orientation Selection
We quantify the structural robustness of an object us-

ing the factor of safety (FS) criterion. The overall goal is
to choose a build orientation that maximizes the FS over the
entire geometry.

For each element i, each FE simulation computes
a stress tensor sssi containing six unique components:

Fig. 7. Histograms of the lowest 300 FS values for the initial and
optimized problem configurations of Fig. 6. Note the improvement in
the minimum FS, as well as the general shift towards the right.
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are the normal and shear stresses, respectively. Based on the
maximum stress theory, a conservative approach to assign a
single FS to an element is to compute six independent FS
values for each stress component and choose the minimum
one as the FS for that element. In our approach, we use this
principle to formulate our optimization problem as follows:
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◆k
#

subject to a,g 2 [�p, p] and b 2 [0, p] ,
where x = [a,b,g]T .

(1)

Here, FSi is the 6⇥1 vector of safety factor values (FSk
i )

for the i’th element, and x is the vector of design variables
where a, b and g are the intrinsic Euler angles representing
a sequential rotation about the global z, x and z axes, re-
spectively. k is a large positive number and n is the number
of elements in the FE analysis. The goal is to find x that
minimizes our objective f (x). In our approach, we calculate
FSi(x) for an element as follows:

FSi(x) =sYsYsY/sss0
i(x) where sss0

i(x) = R(x)sssiRT(x) (2)

where sYsYsY is the 6⇥1 vector of yield strengths for the
anisotropic material obtained for the principal directions
(material coordinates). sssi is the stress tensor in the geometry



Fig. 8. (a) Initial design of experiments, (b) constructing a surrogate model, (c) selecting new samples and (d) enhancing the surrogate
model. (b) and (c) are repeated until a certain stopping criteria is satisfied. Black and red dots represent initial and new samples, respectively.
Transparent surface is the exact objective function and colored surface is the surrogate model constructed with the selected samples.

coordinates and sss0
i(x) is its transformation to the material co-

ordinates. R(x) is the transformation matrix from geometry
to material coordinates.

One advantage of our formulation given in Eqn. (1) is
that the elements with lower FS values contribute more heav-
ily to the objective function compared to those with high FS
values. Hence, in each iteration, the optimization desirably
focuses more on increasing the FS of the most critical ele-
ments. Figure 6 illustrates the performance of our objective
function. For the given door handle, the FS for the most crit-
ical element is increased from 3.5 to 4.6 using our approach.
Figure 7 shows the histograms of the lowest 300 FS values
for the problem configuration shown in Fig. 6. As the ori-
entation is optimized, the number of elements with low FS
values decreases and the distribution shifts to the right.

5 Surrogate-based Optimization
Because our objective function is based on the stress val-

ues obtained from an FE analysis applied for each candidate
orientation, finding the optimum orientation can be very ex-
pensive using conventional methods due to the large num-
ber simulations. This effort can be even more prohibitive for
complex geometries with a large number of elements. Hence,
it is critical to determine useful evaluation points to restrict
the number of FE runs as much as possible. To address this
challenge, we employ a surrogate modeling approach that
approximates the design space with a proxy response sur-
face.

Surrogate models (metamodels) are commonly used in
engineering and design optimization when each function
evaluation involves costly simulations [36–38]. In design op-
timization, these expensive objective functions or constraints
are replaced with surrogate models that serve as approxima-
tions to the original functions.

We use surrogate modeling to approximate the design
space represented by the build orientation x and the corre-
sponding objective function f (x) in Eqn. (1). This objective
function is highly dependent on the geometry, loading con-
figuration and orthotropic material properties, with no access
to an analytical relationship between the design variables and
the objective function. In all the examples presented in this
paper, we have applied a brute force parametric sweeping as
a benchmark and have found the resulting objective functions

to be non-convex. We thus formulate our problem as a black-
box global approximation problem and employ a surrogate-
based optimization method. Specifically, we use MATLAB’s
Surrogate Model Toolbox (MATSuMoTo) presented in [39].

The main steps are as follows:

1. Design of Experiments: Select the number of initial ori-
entations (x’s) and evaluate the corresponding objective
functions ( f (x)’s) using FE simulations.

2. Surrogate Modeling: Construct the surrogate model
mapping x’s to f (x)’s.

3. New Samples: Select new samples using the surrogate
model and perform new FE simulations.

4. Iterate: Iterate until the maximum number of function
evaluations is reached or the improvement f (x) ceases.

Figure 8 shows an example for a two dimensional prob-
lem. The third dimension shows the objective values. Here,
the transparent surface represents the exact values of the ob-
jective function in the specified design space. As the number
of iterations (i.e., the number of samples evaluated using the
expensive objective function) increases, the surrogate model
converges to the exact values of the objective function.

In Step 1, in order to determine the initial orientations,
we use the Latin hypercube sampling (LHS) method with
’maximin’ criterion that allows a wider and more uniform
coverage of the design space by maximizing the pairwise dis-
tances between the sample points. This is a statistical method
commonly used for design of experiments. Because there is
no a priori information about the design space, LHS is a suit-
able method that spreads the sample points evenly across the
design space. In order to evaluate the objective function at
the selected orientations, we use ANSYS Mechanical APDL,
and obtain the stress tensor field and calculate the FS values
using Eqn. (2).

For surrogate modeling, there are several methods
available in the literature including polynomial regression
models [40], radial basis functions (RBF) [41–43], neu-
ral networks [44], kriging [36, 45] and support vector ma-
chines [46]. The best choice for the surrogate modeling
method is usually problem dependent. In this paper, we use
a cubic RBF (with leave-one-out cross validation) to con-
struct the surrogate model because of its simplicity, robust-
ness to different problem settings and high performance for
small sample sizes [47]. However, it is possible to use other



Fig. 9. Comparison of surrogate-based optimization with brute force approach. Samples representing different build orientations are shown
with dots. The color of each dot represents the normalized objective function value for the corresponding orientation. The best orientations
obtained with the two methods and the corresponding minimum FS values are also shown.

methods or combinations based on the problem setup and the
characteristics of the design space, if known apriori. Com-
parative studies addressing this challenge can be found in the
literature [47–49]. In Step 3, the constructed surrogate model
is used to approximate the objective function in the remain-
der of the design space without performing costly FE simu-
lations. For the next iteration, we use the randomized global
candidate point search as our sampling strategy. Here, in ad-
dition to the set of candidate points around the minimum of
the surrogate model, a number of uniformly distributed sam-
ples are selected across the entire domain. We choose this
strategy to avoid possible local minima.

Figure 9 compares our surrogate based optimization
with the brute force approach of uniformly sampling the de-
sign space. Here, 1008 objective function evaluations are
performed using both the brute force and the surrogate-based
approaches hence making the computational effort identical
in both cases. This number represents a uniform grid of
30 degree increments in each of the design variables in the
brute force method. With the surrogate-based optimization,
the minimum FS obtained for the optimum orientation after
1008 function evaluations is approximately 10% better than
that computed by the brute force approach. It can also be ob-
served that the surrogate modeling enables a more efficient
sampling strategy where regions of local minima are more
rigorously explored (dense regions with many blue points in
Fig. 9).

Figure 10 illustrates the performance of the surrogate
modeling approach as a function of evaluation points for the
problem shown in Fig. 9. It can be observed that using only
215 function evaluations, the surrogate model can attain the
best FS computed by the brute force approach which uses
1008 samples. Although the numerical values here might be
problem dependent and may vary, similar gains are expected
to be observed for various problem settings.

Fig. 10. Performance of surrogate-based optimization for problem
configuration in Fig. 9 with respect to the sample size. Red circle
shows the best objective value that can be obtained using the brute
force approach. With surrogate-based optimization, the same perfor-
mance level of brute force approach can be obtained with only 215
samples.

6 Results and Discussion
For a fixed geometry and material, the optimum build

orientation may change drastically if the loading configu-
ration changes. In Fig. 11, optimum orientations are in-
vestigated for two different loading configurations of the
door handle (displacement boundary conditions are kept the
same). It can be observed that the difference between the
optimal build orientations for these two examples is quite
distinct.

Figure 12 demonstrates the proposed algorithm on dif-
ferent problems. In all cases, we observed significant im-
provements in the FS when our optimization approach is
applied. Table 2 shows the improvement in FS for several
problem configurations. Depending on the geometry, load-
ing, boundary conditions and the initial orientation, we were
able to achieve up to 90% improvement in the resulting FS
values. It is also important to note that in some examples
(such as the slingshot and the nut cracker), it is possible to
move from unsafe (FS < 1.0) to safe (FS > 1.0) using our
method without any geometric modification.

Table 3 shows the computational performance of our ap-



Table 2. Numerical results for several test cases.

Problem Setup Optimum Orientation Initial FS Optimum FS % Improvement

Door Handle (Fig. 11-Top) [�79.07�,16.15�,�13.86�] 3.3202 4.6003 38.55

Door Handle (Fig. 11-Bottom) [117.10�,26.19�,�180�] 1.6881 2.2259 31.85

Spring (Fig. 12) [56.12�,35.25�,�5.33�] 9.7441 12.0901 24.07

Slingshot (Fig. 12) [�100.12�,128.06�,179.01�] 0.9123 1.2056 32.15

Nut Cracker (Fig. 12) [7.80�,123.97�,�93.32�] 0.7815 1.4844 89.94

Fig. 11. Effect of different loading configurations on the optimum
build orientation. Left column shows the problem configuration and
right column shows the corresponding optimum build orientations.

Table 3. Computational performance of our method for several test
cases. The maximum number of objective function evaluations are
limited to 400.

Problem Setup Number of
FEA Elements

Computation
Time [s]

Door Handle (Fig. 11) 11290 1196.3999

Spring (Fig. 12) 94228 5571.1827

Slingshot (Fig. 12) 37558 2655.4636

Nut Cracker (Fig. 12) 9145 1124.9073

proach for problems with different mesh complexities. Be-
cause the FE simulations constitute the computational bot-
tleneck, the number of elements directly impact the overall
computation time. We observe that the computation time
per element is similar for all models and it is approximately
0.1s. In these problems, the stopping criterion is the maxi-
mum number of objective evaluations (i.e., FE simulations)
which is selected to be 400. A PC with a 2.4GHz Core CPU
and 8GB RAM using MATLAB R2014b is used for surro-
gate modeling, which drives the FE simulations using a script
based ANSYS Mechanical APDL (v14).

We conducted two sets of physical experiments to evalu-
ate the performance of our approach. First, for the seven ori-
entations shown in Fig. 4(a), we computationally determined
the best orientation by calculating our objective function for

each of the orientations. Direction 2 proved to be the best ori-
entation. For the same geometry and loading configuration,
we then computed the optimum orientation using the pro-
posed surrogate modeling approach, printed a new specimen
corresponding to this optimum orientation, and conducted a
tensile test. Figure 13 compares the stress-strain curves for
these two orientations. It is observed that our optimum orien-
tation improves the yield strength by 13% (from 40.14 MPa
to 45.56 MPa).

We conducted another test on a custom-designed part
shown in Fig. 14. Note that aside from the conventional
tensile specimens, there are not many design alternatives
to physically observe and quantify yielding. As a result,
we devised an experiment where we simultaneously acquire
the forces and the elongation using a tensile-test machine.
We compare the orientation we obtained with our approach
against the orientation that minimizes the amount of support
structure (machine orientation) and an orientation based on a
mechanical engineer’s best judgement (Fig. 14). It is shown
that our optimized orientation withstands a higher end force
before yielding compared to the other two directions (12%
and 20% better compared to human and machine prediction,
respectively). For each of the model and loading configura-
tion shown in this paper, we asked several engineers to pre-
dict the best orientation to maximize FS. In all cases, our
approach outperformed human judgment.

Scope and assumptions: Our analysis is restricted to
homogeneous materials and we assume a linear-elastic FE
model to successfully simulate the stress and strains in the
object. Our failure criteria is based on maximum stresses
and we do not consider strain failure or maximum displace-
ment constraints. However, since our approach is based on
FE simulations, it is readily possible to include such crite-
ria in the objective function or the constraints without loss
of generality. The yield criterion we use is accurately appli-
cable to ductile materials. For brittle materials, we use the
ultimate tensile strength (UTS) as the yield strength. This
assumption may cause our analysis for brittle materials to be
less accurate compared to ductile materials.

Our approach assumes that the properties extracted from
the tensile test specimens accurately represent the properties
of the designed object. In certain printing techniques such
as FDM, each layer may involve first a contouring of the
layer where the outline of the layer is printed, followed by
a raster fill-in. In such cases, the properties will be a func-
tion of the object’s scale, thus possibly creating a mismatch
between the test specimen’s and the actual object’s proper-



Fig. 12. Build orientation optimization results for three different problem configurations. Left column shows the problem settings. Middle
column shows the distribution of the lowest 300 FS values over the geometry for the initial and optimum orientations. Right column shows the
optimum build orientations.

Fig. 13. Performance evaluation of our algorithm with a standard dog-bone tensile specimen.

ties. Also, we assume that the effects of support structure on
the anisotropic mechanical properties of fabricated products
are negligible. However, investigation and incorporation of
these effects might enhance the performance of the presented
method further.

7 Conclusions
Additively manufactured products exhibit directional

dependencies in their structural properties due to the layered
nature of the printing process. As a result, the build orien-
tation can significantly affect the structural performance of
the resulting objects. In this paper, we developed a build
orientation optimization algorithm that maximizes the me-
chanical strength of an additively manufactured object under
certain loading/boundary configurations. We start with a set
of physical experiments to determine the orthotropic mate-
rial properties. Then, our optimization approach uses this

information to calculate an optimum build orientation.

Our objective in the optimization problem is formulated
based on the factor of safety values obtained using FE simu-
lations. We have shown that a surrogate-based optimization
approach can accelerate the optimization process by strate-
gically choosing useful evaluations points. Both our com-
putational and physical experiments show that the optimized
build direction can lead to considerable improvements in an
object’s ability to withstand applied loads.

Future work: In this work, we explored our build orien-
tation optimization algorithm only for a single polymer ma-
terial and AM process combination. We expect the proposed
formulation to be readily applicable to new polymer-based
materials and print technologies. While we have observed
a strong consistency among the samples printed in the same
orientation, more studies quantifying the sensitivity of the
results to the process parameters may be required to further



Fig. 14. Performance evaluation of our algorithm with a custom-designed part.

validate the proposed work. We have not tested the proposed
method to AM of metals. Recent efforts in process and mi-
crostructural modeling/simulation for metals would be criti-
cal for a successful extension of the proposed method to met-
als. Our preliminary discussions reveal that there may be
a large number of parameters that affect anisotropy making
such properties a strong function of the overall part geome-
try, spatial position in the print volume, thermal aspects of
the process and post processes applied to the part. Moreover,
in this work, we optimize the build orientation for a single
loading configuration only. Yet, the optimization problem
can be extended to ensure that the resulting build orientation
is robust to multiple different loading configurations. This
may require solving the problem multiple times using differ-
ent loading configurations and choosing an orientation that
jointly maximizes the FS for all considered loading condi-
tions. Likewise, the uncertainty on the loading conditions
could be encoded statistically to solve for a more robust build
orientation. Finally, other criteria such as creep and fatigue
failure provide interesting research opportunities for build di-
rection optimization.
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