
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE 2016
August 21-August 24, 2016, Charlotte, North Carolina, USA

IDETC2016-60095

A DATA-DRIVEN APPROACH TO PREDICT HAND POSITIONS FOR TWO-HAND
GRASPS OF INDUSTRIAL OBJECTS

Erhan Batuhan Arisoy
Siemens Corporate Technology

Corporate Research
755 College Road East

Princeton, New Jersey 08540
erhan.arisoy@siemens.com

Guannan Ren
Siemens Corporate Technology

Corporate Research
755 College Road East

Princeton, New Jersey 08540
guannan.ren@siemens.com

Erva Ulu
Carnegie Mellon University
Mechanical Engineering

5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213

eulu@cmu.edu

Nurcan Ulu
Carnegie Mellon University
Mechanical Engineering

5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213

ngu@cmu.edu

Suraj Musuvathy
Siemens Corporate Technology

Corporate Research
755 College Road East

Princeton, New Jersey 08540
suraj.musuvathy@siemens.com

ABSTRACT

The wide spread use of 3D acquisition devices with high-
performance processing tools has facilitated rapid generation of
digital twin models for large production plants and factories for
optimizing work cell layouts and improving human operator ef-
fectiveness, safety and ergonomics. Although recent advances
in digital simulation tools have enabled users to analyze the
workspace using virtual human and environment models, these
tools are still highly dependent on user input to configure the sim-
ulation environment such as how humans are picking and moving
different objects during manufacturing. As a step towards, alle-
viating user involvement in such analysis, we introduce a data-
driven approach for estimating natural grasp point locations on
objects that human interact with in industrial applications. Pro-
posed system takes a CAD model as input and outputs a list of
candidate natural grasping point locations. We start with gener-
ation of a crowdsourced grasping database that consists of CAD
models and corresponding grasping point locations that are la-
beled as natural or not. Next, we employ a Bayesian network

classifier to learn a mapping between object geometry and natu-
ral grasping locations using a set of geometrical features. Then,
for a novel object, we create a list of candidate grasping posi-
tions and select a subset of these possible locations as natural
grasping contacts using our machine learning model. We evalu-
ate the advantages and limitations of our method by investigating
the ergonomics of resulting grasp postures.

INTRODUCTION
The ever rising demand for innovative products, more sus-

tainable production, and increasingly competitive global markets
require constant adaptation and improvement of manufacturing
strategies. Launching faster, obtaining higher return on invest-
ment, and delivering quality products, especially in demanding
economic times and considering regulatory factors necessitates
optimal planning and usage of manufacturing production capac-
ity. Digital simulation of production plants and factories are in-
valuable tools for this purpose. Commercial software systems
such as Siemens PLM Software Tecnomatix provide powerful
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simulation functionality, and tools for visualizing and analyzing
results of the simulations.

Key aspects of optimizing manufacturing facilities that in-
volve human operators include optimizing work cell layouts and
activities for improving human operator effectiveness, safety and
ergonomics. Examples of operations that are typically config-
ured and analyzed in a simulation include humans picking and
moving objects from one place to another, assembling a product
consisting of multiple components in a factory, and using hand
tools to perform maintenance tasks. One of the challenges in
configuring such a simulation is in specifying the locations of
the grasp points on objects that human interact with. The current
approach relies on a manual process through which a user must
specify the places where the human model should grasp each ob-
ject. This is a tedious and time consuming process, and therefore
a bottleneck in configuring large scale simulations. Therefore
automated techniques for estimating natural grasp points are de-
sirable. This paper presents a data driven approach for estimat-
ing natural looking grasp point locations on objects that human
operators typically interact with in production facilities. These
objects include mechanical tools, parts and components specific
to products being manufactured or maintained such as automo-
tive parts, etc. The proposed system takes a CAD model of an
object as input, and outputs a list of candidate natural grasping
point pairs. Each point pair consists of one point to place the
palm of the left hand, and the other to place the palm of the right
hand. We start with a crowdsourced database that consists of
CAD models and corresponding grasping point locations that are
labeled as natural or not. A Bayesian network classifier is used
to learn a mapping between object geometry and natural grasp-
ing locations using a set of geometrical features. Then, for a new
object not present in the database, we create a list of candidate
grasping positions and select a subset of these possible locations
as natural grasping contacts using the machine learning model.
We evaluate the advantages and limitations of our method by in-
vestigating the ergonomics of resulting grasp postures. Our main
contributions are as follows:

1. A novel grasp point estimation algorithm for two-hand
grasps of objects that is tailored towards the digital simu-
lation for production planning.

2. A set of geometric features to capture the natural appearance
of two-hand grasps.

3. Ergonomics based evaluation of the performance.

Section 2 presents related work. Section 3 presents an
overview with technical details in Section 4. Results and dis-
cussion of the proposed approach are presented in Section 5, and
conclusions are summarized in Section 6.

RELATED WORK
Analysis of holding objects has been explored in robotic

grasping, computer graphics and fixture design. In robotics, re-
searchers try to estimate contact points on an object based on sen-
sor data that they have in the current setup. In general, problem
is shrunk into hand grasping for certain types of robotic hands.
Several examples of approaches adopted in the robotics fields can
be found in [1–4]. In general, disadvantages of these methods
are that they are all hardware dependent and main focus is daily
used objects (such as bottles, cans and pans). On the other hand,
researchers in computer graphics are interested in human grasp-
ing for simulation and animation purposes where natural looking
grasping motions are desired. Some examples of grasping appli-
cations developed in computer graphics include [5, 6]. In fixture
design, the grasping is studied to solve the problem of main-
taining a specified position and orientation of an object in the
presence of external disturbances (such as cutting forces in man-
ufacturing). Since precision of the manufacturing process de-
pends on workpiece stability, constraining the workpiece is criti-
cal [7]. Due to strict performance requirements, most approaches
use physics based methods. Examples include [8] where Wang
et al. uses force closure solutions for precision fixture design and
a fixture layout design method based on largest simplex calcula-
tion [9].

While robotic grasping and computer graphics applications
mainly focus on handling of everyday objects in our daily lives,
fixture design examines holding mechanical objects firmly in
place during manufacturing processes. In this paper, we focus on
mechanical objects that will be handled in a factory environment
as in fixture design. However, our main motivation is similar to
computer graphics applications where achieving natural looking
grasps is the main priority rather than firm and strict grasps.

In these three areas, many techniques have been developed
for grasping. The most common approaches to grasping prob-
lem include physics based analytical methods and data-driven
methods. In literature, data-driven methods are presented to cap-
ture human decision making in grasping process. The exam-
ples include primitive based approaches [10, 11] where objects
in database are represented as combinations of simple primi-
tive shapes (such as cylinder, elipsoid, and cuboid) and shape
matching methods [12] where suitable grasping pose is matched
with the object to be manipulated. Other data driven methods
are based on collecting human grasping data through labeling
[2, 10, 12–14] or motion capture [15]. In physics based meth-
ods, the main idea is to find a set of feasible contact points that is
optimum in terms of a pre-defined quality measure. Examples in-
clude [16] where authors present a method to select grasp points
that minimize the contact forces. Similarly, Chinellato et al. [17]
use geometrical constraints based on grasp polygon to evaluate
the feasible point sets. A review of grasp quality measures can
be found in [18].

While having an optimum solution for a certain physical ob-
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FIGURE 1. Overview of the proposed methodology for data-driven grasping point estimation.

jective could be suitable for robotic grasping applications and
fixture design, we are, here, mainly interested in finding grasp-
ing configurations that are closest to natural human behavior. For
this reason, instead of choosing a physical approach we use a
data-driven method with crowdsourced labeling of human grasp.

OVERVIEW
The objective of the proposed methodology is to design and

prototype a decision support framework for estimating natural
grip positions for a new 3D object. To achieve this goal, we take
inspirations from the fact [ref] that humans are able to identify
good grasping locations for novel objects, in a fraction of a sec-
ond, based on their previous experiences with grasping different
objects. To mimic this extraordinary capability, we are devel-
oping a learning based algorithm that utilizes a database of 3D
models with corresponding crowdsourced natural grasp locations
and identifies a set of candidate hand positions for two hand nat-
ural grasps of new objects. Figure 1 illustrates overview of the
proposed methodology. Our natural grasping point estimation
algorithm consist of 4 main phases: 1) Grasping database gener-
ation using crowdsourcing, 2) Geometrical feature selection and
extraction for learning the relationship between objects’ geom-
etry and natural grasping point locations, 3) Learning phase for

understanding how people grasp objects in a high dimensional
feature space and 4) Data-driven grasp point estimation. For an
efficient algorithm, we apply the following simplifications:

1. Objects will be lifted with both hands.
2. Objects are assumed to be solid and have uniform material

distribution, hence center of mass matches with the centroid
of the input geometry.

3. Objects are light enough to be carried by human.
4. We assume that the object does not contain handles or thin

edges where humans can grasp these objects using these
handles.

5. Hand/finger joint positions/orientations are ignored. Only
hand positions will be estimated. A great analogy for this
assumption is modeling the human workers as if they are
wearing boxing gloves while lifting target objects.

These assumptions will be detailed as we progress further.

TECHNICAL DETAILS
Grasping Database Generation

In order to estimate natural grasping positions given a new
object, we took inspirations from the fact that human concep-
tual knowledge can identify grasping regions for a new target
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FIGURE 2. Developed user interface for data collection and grasping
location estimation.

object in a fraction of seconds based on his previous interactions
with different objects. For instance, people may only need to see
one example of a novel screw driver in order to estimate grasping
boundaries of the new concept. Although recent studies for grasp
location estimation focus on pure geometrical approaches, our
goal is to mimic human conceptual knowledge to learn the way
people create a rich and flexible representation for the grasping
problem based on their past interactions with different objects
and geometries. To achieve this goal, we have implemented a
C++ based user interface where users can import 3D models and
pick two candidate grasping locations on the imported 3D sur-
face. After picking candidate grasping locations, the user has to
label selected point pairs as good or bad grasping positions. We
have utilized developed software interface in order to collect a
database of 3D models and pair of grasping point pairs that are
manually labeled as good or bad using crowdsourcing. In Figure
2, the graphical user interface for the software is shown. The ob-
ject model is illustrated in red and dark blue points (pointed to
by the orange arrows) correspond are manually selected to as the
graspable contact points. The database generation menu is high-
lighted with the red boundaries. We have retrieved a set of 50
different CAD geometries from GrabCAD community including
but not limited to screwdrivers, drills, razors, saws, etc. and pre-
processed these geometries to scale to fit them in a 50 cm by 50
cm by 50 cm bounding box and adjusted their orientation such
that the gravity is in the negative y direction and the front face of
the object is aligned in the positive z direction. After preprocess-
ing, we have applied different scaling transformations in order to
populate our database with additional synthetic models. After the
addition of the synthetic models, the total number of CAD mod-
els in our database is increased to 70. Figure 3 illustrates some

FIGURE 3. Example geometries in training and testing database.

of the CAD models in our database. Collecting and preprocess-
ing a database of 3D CAD geometries is the first stage of our
data generation phase. In the second phase, we asked 50 people
to provide pairs of grasping point locations on the 3D geometry
that is randomly selected among the models in our database and
displayed to the user. The users are asked to provide examples
of both good and bad grasping point locations and these point lo-
cations and corresponding geometries are recorded. The random
draw from the database is determined by the current status of the
distribution of the recorded both good and bad grasping point lo-
cations for every 3D model. For example, if the database has
many both positive and negative grasping locations for a geome-
try A compared to geometry B, the random draw algorithm will
lean toward selecting geometry B for grasp location data collec-
tion. We created our database with generalization and portability
in mind. Current database includes over 1000 manually selected
grasp positions. In order to save our grasping configurations, the
following list shows the stored database information:

1. The name of the object file
2. The transformation matrix for the original object to its final

location, orientation, and scale
3. Manually selected gripping locations (right hand, left hand)
4. Surface normal at gripping locations (right hand, left hand)
5. Classification of the instance (1 for graspable, 0 for not gras-

pable)

Feature Selection
In this section, we describe the geometrical features that are

used in our algorithm to capture the conceptual human knowl-
edge that is encoded in the collected database of grasps. Our
goal here is to find a mathematical representation that will allow
us to determine whether a given grasp can be evaluated as viable
or not. In particular, we would like our feature set to capture the
natural way of grasping an object, therefore we base our formu-
lations mainly on observations.

We want our feature set to contain the information about the
stability and relative configurations of contact positions with re-
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FIGURE 4. Although all three examples look the same in terms of
distance based features ( f 1 and f 2), only (b) is a stable grasp point con-
figuration to carry the rectangular object. Features f 3 and f 4 allow us
to distinguish between these three situations.

spect to each other and the center of the object’s mass. To calcu-
late the center of mass of an object in our database, we make the
assumption that the center of mass can be approximated by the
geometrical centroid of the object. The centroid is calculated by
computing the surface integral over a closed mesh surface. For
each grasping configuration, the contact positions are denoted as
p1 and p2. The surface normals at p1 and p2 are marked as n1
and n2 and the location of the center of mass is denoted as pCoM .
The vector connecting p1 to p2 is labeled as nc. Additionally,
the signed distance between every grasping point and the ver-
tical plane passing through the center of the mass of the input
geometry is labeled as d1 and d2. Following equations present
the calculation of nc, d1 and d2 values.

nc = (p1− p2)/‖p1− p2‖
d1 = nc · (p1− pCoM)

d2 = nc · (p2− pCoM)

(1)

Although we studied a wide variety of features to represent
the solution space for the two-hand grasping problem, we identi-
fied following subset of geometrical features as the most relevant
ones for our problem.

Feature 1: Humans tend to lift objects using symmetrical
grasping locations with respect to the vertical plane passing
through the center of mass in order to minimize the difference
between lifting forces applied by both hands. In an effort to mea-
sure humans’ tolerance to mismatch in this, we formulated our

first feature as in Eq. 2.

f 1 = d1 +d2 (2)

This feature also allows our algorithm learn and avoid gen-
erating unstable cases such as grasping an object from two points
at one side of the center of mass.

Feature 2: Human anatomy allow them to extend their arms
only to some extend while carrying an object comfortably. Simi-
larly, keeping two hands very close while lifting a large object is
uncomfortable for humans. In order to capture the comfortable
range of distance between two grasp locations, we formulated
the second feature as in Eq. 3.

f 2 = |d1|+ |d2| (3)

Feature 3 and 4: In addition to the distance based features, f 1

and f 2, inspired by [12] and [19], we store the angles formed
between the surface normals and the line passing through the
contact points as our third and fourth features, f 3 and f 4 (Eq. 4).
Note that this formulation is based on the assumption that p1 and
p2 correspond to contact points for certain sides hands (e.g. p1 is
right and p2 is left hand) and this should be consistent throughout
the entire database.

f 3 = atan2(‖nc×n1‖,nc ·n1)

f 4 = atan2(‖nc×n2‖,nc ·n2)
(4)

These features allow us to distinguish contact pairs that look
the same in terms of distance based features, f 1 and f 2, but
very different in the sense of grasp stability. This discrimina-
tory power is important to capture human tendency to balance
forces and torques applied on the object while manipulating it.
An example case is illustrated in Figure . Although all three cases
would be evaluated the same in terms of f 1 and f 2, features f 3

and f 4 let us distinguish these cases from each other.

Feature 5: As our fifth feature, f 5, we use the angle formed be-
tween the gravitational field vector and the line passing through
the contact points (Eq. 5). This feature captures the orientation
of the grasping pairs mutually with respect to a global static ref-
erence.

f 5 = g ·nc (5)
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FIGURE 5. Feature set profiles calculated for 2 different configura-
tions.

where g represents the gravitational field vector. In our applica-
tions, we take g = [0,−1,0]T .

Feature 6: The last geometrical feature that needs to be ex-
tracted for our learning problem is given in Eq. 6.

f 6 = z ·nc (6)

where z represents frontal direction at which human is facing. In
our applications, we use z = [0,0,1]T by fixing the global coordi-
nate frame on human body. Together with f 5, this feature allows
our algorithm learn allowable orientation of human grasps with
respect to a global static reference frame.

For every grasping point pairs i and j, a six dimensional fea-
ture vector (Eq. 7) is generated where every component corre-
sponds to one of the calculated features.

Fi j = [ f 1
i j, f 2

i j, f 3
i j, f 4

i j, f 5
i j, f 6

i j ]
T (7)

Detailed illustration of features for different grasping condi-
tions on a basic cylindrical geometry is shown in Figure 5. Ac-
cording to this figure, even if the target geometry to be lifted is
the same for all four grasping cases, corresponding feature sets
are unique for every case. The feature set profile demonstrates
the capability of differentiating varying p1 and p2 configurations
in the six dimensional feature space.

FIGURE 6. Pipeline for grasping point estimation.

Learning Phase
After the identification of the geometrical features to mathe-

matically encode the configuration of different grasping locations
on 3D geometries, our next task is selecting a machine learning
model that can be trained on the collected grasping database us-
ing these features. The key learning problem that our approach
focuses on is extracting a mapping between the geometry of
3D objects and the corresponding natural grasping locations for
these 3D objects by mathematically encoding how people lift 3D
objects in their daily lives using the database generated in sec-
tion Feature Selection. To achieve this goal, we have utilized the
WEKA machine learning toolkit [20] to experiment and study
the performance of different machine learning models. First of
all, we have partitioned our database into 2 sections: 1) train-
ing set (eighty percent of the entire database) and 2) testing set
(twenty percent of the entire database). A collection of the ge-
ometries used for training and testing are displayed in Figure 3.
After splitting the database into training and testing components,
we performed multiple experiments with several types of dif-
ferent classifiers that are Naive Bayes Decision Trees, Random
Forests and Multilayer Perceptron learning approaches.

To begin, we experimented with the simple decision tree
classifier [21], namely J48, in the WEKA library. The key ad-
vantage of using decision tree classifier is the fact that it is fast
to train and interpret the resulting tree. However, oftentimes, de-
cision trees have a tendency to over-fit the training dataset, i.e.
allowing high performance on the training dataset but poor per-
formance on the testing data set. To alleviate overfitting issues,
we apply tree pruning for the trained J48 classifier in WEKA.
Another classifier we examined is WEKAs Random Forest clas-
sifier. The Random Forest classifier belongs to the ensemble-
based learning methods. It can be viewed as an aggregation of
decision trees and the majority vote among all of the trees deter-
mines the label for a classification problem. Each decision tree is
constructed using a bootstrapped sample of the training dataset,
and at each branch point, the best feature to split on is selected
from a random subset of all features [22]. Furthermore, multi-
layer perceptron (MLP) is a feedforward artificial neural network
algorithm that is trained using the backpropagation algorithm.
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FIGURE 7. Training performance evaluation.

Each hidden node in the network transforms the input data using
a sigmoid function. This transformation allows the multilayer
perceptron to model non-linear problems. Each layer within the
MLP is fully connected to the next layer. We ran 500 epochs
under a learning rate of 0.3 and a momentum rate of 0.2 when
training the multi-layer perceptron classifier.

Additionally, we have experimented with various other ma-
chine learning classifiers. Similar to the J48 and the Random
Forest algorithms, the Naive Bayes decision tree (NBTree) adds
another tree-based classifier to the study. The NBTree is a com-
bination of the Naive Bayes classifier and the decision tree clas-
sifier. It splits the dataset at each branch point and uses Naive
Bayes classifier at the leaves [23]. We also experimented with the
Bayesian network classifier. The default WEKA settings were
used during the training process for the Bayesian Network.

Grasp Point Estimation

For grasping point estimation, we utilized the interface that
we developed for database collection. The approach we adopted
for the estimation process is shown in Figure 6. First of all, the
user imports the 3D geometry of the target object as a triangular
representation into our interface for grasping point estimation.
Secondly, our estimation algorithm uniformly samples a fixed
number of points on the 3D surface of the input geometry. The
number of sampled points is controlled by a parameter adjusted
by the user and these sample points serve as an initial candidate
set for the estimation problem. Then, we randomly select pairs
of points (since we focus on two-hand grasping, our pairs are
groups of 2 points) among these uniformly sampled points and
calculate feature vectors for every pair as described in previous
section. Finally, we classify each candidate pair using their fea-
ture vector and assign probabilities them based on the classifica-
tion results. The system automatically ranks candidate grasping
pairs based on their probability values and displays 5 top grasp-
ing pairs. For visualization purposes, the system automatically
creates gray lines that connect grasping points for every down-
selected pair.

FIGURE 8. Testing performance evaluation.

RESULTS AND DISCUSSIONS
Our approach to learning a grasping location estimation

function using a machine learning model that resembles human
conceptual knowledge requires a database for both training and
testing purposes. Based on crowdsourcing technique, we col-
lected a database of 150 CAD geometries with over 1000 man-
ually labeled good and bad grasping point configurations. How-
ever, crowdsourcing user studies require special care when user
ratings are subjective [24]. We use a diligence based reliability
check method to filter out unreliable responses. We expect that
most of the respondents will complete labeling of a grasping in-
stance within a similar period of time. We have discarded the
grasping pairs that are labeled more than ten times faster than
the mean labeling time by users. After the filtering operation,
collected database is divided into training and testing datasets
where 80 percent of the entire data is included for training. For
the learning phase, we have employed several classification tech-
niques and we have compared their individual performances on
the testing dataset. We present the performance of these clas-
sifiers on the training set using precision, recall and F1 scores
as shown in Figure 7. For training phase, we have used 10 fold
cross validation technique and for the evaluation of different clas-
sifier techniques we use the precision as the performance metric.
The highest training precision is observed for the Random Forest
classification technique with a precision value of 0.96.

However, for the testing database, the highest precision
value is observed with Bayesian Network Classification. Fig-
ure 8 illustrates the precision and recall values for the testing set.
We discovered noticeable improvement on the precision when
we used tree-based classifiers than function-based classifiers. We
attribute this to the fact that there is noise in our training dataset,
and the tree-based classifiers have high tendency to overfit the
training dataset. Based on the precision values, we have selected
Bayesian Network Classifiers for the grasping point estimation,
although it has lowest recall value, which means that there is a
high false negative rate. We believe that this behavior is because
of the limited size of the collected database. Figure 9 illustrates
some example results for the proposed data-driven grasping point
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FIGURE 9. Example results for grasping point pair estimation (gray
line illustrates identified best grasping point pairs with highest probabil-
ity).

estimation algorithm using Bayesian Network Classifier. Addi-
tionally, we have performed an individual performance analysis
for every feature in our proposed feature list in section Feature
Selection using the testing database. According to this analysis,
we conclude that feature 5 tends to be the most influential feature
that separates the grasp-able and the non-grasp-able samples in
the training dataset. 75 percent of the grasp-able data samples
fall within 0 to 0.15 value for feature 5; while 75 percent of the
non-grasp-able data samples fall between 0.4 to 1.0 value for fea-
ture 5. Figure 10 illustrates this relationship.

For training and testing purposes, we employed a desk-
top workstation with Intel Xeon E5620 2.40GHz processors and
16GB memory. Among the different classifiers we experimented
with, we found that the training for the Multilayer Perceptron
(MLP) classifier is the most complex and time-consuming learn-
ing technique. The MLP has many different training parameters,
and we evaluated our classifiers based on the number of hidden

FIGURE 10. Effect of feature 5 on the classification result

layers, as well as the learning rate. We notice that the accuracy
of the MLP classifier over the training set improves when the
number of hidden layers are increased. However, the increase
in accuracy levels off after adding 3 hidden layers as shown in
Figure 11.

In addition to precision analysis on the testing database,
we utilized Siemens Jack Software to evaluate if the grasping
points identified by the data-driven algorithm result in comfort-
able grasping. To do that, we employed the comfort assessment
tool under Packaging Toolkit. This tool enables comfort anal-
ysis of two different body postures with respect to each other
for grasping or lifting tasks. The Jack comfort assessment tool
is based on the comfort study [25] that targeted the ergonomics
aspect of drivers. The comfort assessment interface shows the
name of the joint on the left panel, a bargraph displaying the cur-
rent postures deviation from the mode, the numeric comfort val-
ues at the current position, and the range and mode based on re-
search data.The mode value of a given joint can be interpreted as
the most adopted posture of the joint during driving. We expect
that the grasping points with high classification probability will
result in body postures with higher comfort metrics compared to
the points that have lower classification probabilities. Figure 12
illustrates the Jack Interface and the calculated comfort metric
for 2 different grasping configurations for a ladder object. We
use Jacks comfort assessment tool to evaluate strictly the upper
body (i.e. arm and wrist) postures of the final grasp results.

The first set of points are labeled as good grasping locations
by the proposed algorithm with ≈ 0.98 classification probability
, whereas the second configuration has a very low classification
probability ≈ 0.01. The resulting comfort metrics are consis-
tent with our expectations that the Jack Software returns higher
comfort values for the first grasping configuration compared to
the second one (Compare the values for the joint angles with re-
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FIGURE 11. Precision values with varying number of hidden layers
for MLP.

spect to given minimum and maximum values in red rectangular
box). Furthermore, another interesting observation is the fact that
learning based approach was able to capture the constraint that
the distance between two grasping points can not be greater than
the shoulder span of humans. This rule is actually captured by
our learning model and applied for grasping location estimation.
Additionally, our learning model was also able to capture the ten-
dency that humans usually position their right hands higher than
their left hands while lifting an object.

CONCLUSIONS
In this paper, we introduced a data-driven approach for es-

timating natural grasp point locations on objects that human in-
teract with in industrial applications. The mapping between the
feature vectors and 3D object geometries are dictated by grasping
locations crowdsourcing from general public. Hence, our method
can accommodate new geometries as well as new grasping loca-
tion preferences. While our preliminary results are promising for
a data-driven approach for the estimation of grasping locations,
more studies on the feature selection may be required. Addition-
ally, both the testing and training datasets needs to be increased
in order cover a broader range of object families for grasp point
estimations. Similarly, in this work, we assumed that the objects
do not offer convenient handles for carrying purposes. A prepro-
cessing algorithm might be implemented to check if the object
contains such handles before running the data-driven estimation
tool. Finally, integration of data-driven approaches with physics
based models for grasping location estimation provide interest-
ing research opportunities to incorporate material properties.
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FIGURE 12. Comparison of comfort values for 2 different grasping
configurations for a ladder object using Siemens Jack Software: Com-
fort metrics in (a) are within the identified ranges, whereas in (b) comfort
metrics are outside of the predefined range by Porter [25].
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