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Design and Analysis of A Modular Learning Based Cross-Coupled Con-
trol Algorithm for Multi-Axis Precision Positioning Systems
Nurcan Gecer Ulu, Erva Ulu and Melih Cakmakci*

Abstract: Increasing demand for micro/nano-technology related equipment resulted in growing interest for preci-
sion positioning systems. In this paper a modular controller combining cross-coupled control and iterative learning
control approaches to improve contour and tracking accuracy at the same time is presented. Instead of using the
standard error estimation technique, a computationally efficient and modular contour error estimation technique
is used. The new controller is more suitable for tracking arbitrary nonlinear contours and easier to implement to
multi-axis systems. Stability and convergence analysis for the proposed controller is presented with the necessary
conditions. Effectiveness of the control design is verified with simulations and experiments on a two-axis position-
ing system. The resulting positioning system achieves nanometer level contouring and tracking performance.
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1. INTRODUCTION

In recent years increasing demand for micro/nano tech-
nology related equipment resulted in growing interest for
precision positioning systems. Multi-axis precision po-
sitioning is crucial for applications such as micro/nano-
scale manufacturing and assembly, optical component
alignment, scanning microscopy, nano-particle placement
and cell /tissue engineering [1–3]. These applications
generally require both high contouring and tracking per-
formance making their design process challenging. In
tracking control, the primary objective is moving a pre-
determined point on the system along a desired trajec-
tory. Although almost all systems employ feedback con-
trol, considerable improvement in tracking accuracy can
be achieved by addition of feedforward control to the al-
gorithm. Several feedforward control approaches are de-
veloped in literature to improve tracking accuracy such as
zero phase error tracking control (ZPETC) [4–6], feed-
forward friction compensation [7,8] and iterative learning
control (ILC) [9–11]. Performance of a ZPETC system is
sensitive to variations in plant parameters and modeling
errors since it is based on pole/zero and phase cancella-

tions [4]. Friction compensation techniques generally in-
corporate a system identification process that should be
repeated if system parameters change. In [9] researchers
claim that specifying a detailed plant model for ILC via
zero phase filtering is not necessary due to the principle of
self-support [12]. Since stored control signals from pre-
vious runs reflect the plant characteristics, ILC can im-
prove tracking performance of a system even the plant
structure and nonlinearities are unknown [13]. However,
for ILC approach to provide improvements, the system
should be executing the same task repeatedly such as in
the case of manufacturing and assembling applications.
Generally, improving tracking accuracy of an individual
axis also increases the contouring accuracy of a multi-axis
positioning system. However, in some cases where the ef-
fect of sub-system dynamics and the friction effects are
dominant decreasing the tracking error per axis may not
decrease the contour error. It may even deteriorate the
contouring performance as reported in [14, 15]. Hence,
the control algorithm should be designed considering not
only the tracking error but also the contour error in order
to achieve high accuracy for both. Koren [16] proposed
the cross-coupled control (CCC) structure that focuses on
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eliminating the contour error rather than the tracking error
in individual axis. This method is proven to reduce con-
tour error significantly. Since the introduction of the CCC,
it has been modified and combined with different control
techniques. Some examples can be given as the observer-
based CCC [17], cross-coupled model reference adaptive
control [18], CCC with disturbance observer and ZPETC
[6], CCC with friction compensation [8] and CCC with
ILC [10, 19, 20].

Since CCC based control schemes use the contour er-
ror as the input, there is a need for calculating this error in
real time. Contour error is defined as the distance between
the actual position and the nearest position on the contour
[21]. Contour error can be calculated easily for linear con-
tours. However, calculation procedure is very complicated
for nonlinear contours, especially during real-time oper-
ation. Some approximations have been used to calculate
the nonlinear contour error in real-time systems. The most
common method is using the circular contour assumption
suggested by Koren et al. [14]. Yeh and Hsu [21] pro-
posed another method that approximates the contour er-
ror as the vector from the actual position to the nearest
point on the line that passes through the reference posi-
tion tangentially. The latter approach has several advan-
tages over the former such as computational efficiency,
applicability for arbitrary contours and convenience for
multi-axis implementation [21]. Iterative Learning Con-
trol improves the tracking performance of the single axis
positioning systems. By using the ILC with cross cou-
pled control the contouring performance of the system can
also be improve further. The method presented here im-
plements CCC and ILC using the contour error vector ap-
proach as briefly outlined in [22]. It is computationally
more efficient for calculating coupling gains of arbitrary
nonlinear contours, modular in terms of including more
axis which makes it easier to implement on multi-axis sys-
tems. Moreover, the proposed method utilizes ILC with
zero-phase filtering which is more practical and suitable
for modular systems where having unaccounted modeling
uncertainties lower the system performance and modular-
ity. The combined CCC and ILC with ZPF method pre-
sented here is used to achieve nanometer level precision
(contouring + tracking) applied to a real-time position-
ing system. The multi degree of freedom system using
our method is modular in the sense that multiple identi-
cal stages can be assembled together to form positioning
systems without changing the stage control algorithm (i.e.,
mechatronic modularity). The increased modularity of the
system compared to similar solutions is important since it
improves desired life cycle properties.

The rest of this paper is structured as follows: In Sec-
tion 2, system configuration and axis controller used in
this study is introduced. Then, in Section 3, the CCC and
ILC via zero-phase filtering is explained and the combined
method is described. In Section 4, the stability and conver-

Fig. 1. Two-axis positioning system with identical stages.

gence analysis of the new method is presented. Simulation
and experimental results are discussed in Sections 5 and 6,
respectively. Conclusions and future work is presented in
Section 7.

2. SYSTEM SETUP AND AXIS CONTROL

The two-axis positioning system used in our studies is
constructed by assembling two modular single-axis stages
perpendicularly as shown in Fig. 1. This stage system
is modular in the sense that multiple identical stages can
be assembled together to form positioning systems with-
out changing the stage control algorithm (i.e., mechatronic
modularity). Modularity is important since it improves de-
sired life-cycle properties such as maintainability, upgrad-
ability, diagnosability of a system. Interactions between
module dynamics lower the modularity of the overall sys-
tem lowering these desired properties. It is important to
develop a controller modular in structure that is suitable
for not only biaxial systems but also any multi-axis sys-
tem.

The modular single-axis stage used in this study com-
posed of a stationary base and a moving slider. These parts
are connected to each other with cross-roller linear bear-
ings. The stage is actuated by a brushless permanent mag-
net linear motor (PMLM) and the position feedback is re-
ceived from an incremental linear encoder. The linear en-
coder has 1µm off-the-shelf resolution. However for our
system, the encoder resolution is increased to 25nm using
an interpolation technique discussed in [23]. Closed loop
configuration of the single-axis stage is given in Fig. 2. A
PC-based controller platform gives the positioning input
to the system and runs the control algorithm in real-time.
The control signal is sent to the amplifier by an analog out-
put card in the controller. The position feedback is taken
from the encoder by the data acquisition system and fed to
the controller.

A simple diagram of the single-axis stage is given in
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Fig. 2. Closed loop control setup of the single-axis sys-
tem.

Fig. 3. Dynamic model of a single-axis system.

Fig. 3 where R is the linear motor resistance, L is the lin-
ear motor inductance, KBEMF is the back electromotive
force constant, K f orce is the force constant, m is the slid-
ing mass, b is the viscous friction, em is the linear motor
input voltage, Kamp is the amplifier gain and i is the linear
motor current. By applying the Kirchoff’s Voltage Law
and Newton’s Second Law for the system given in Fig. 3
the system dynamic equations given in (1) and (2) respec-
tively is obtained:

emKamp −Ri−L
di
dt

−KBEMF ẋ = 0, (1)

mẍ+bẋ−K f orcei = 0. (2)

Based on the equations given in (1) and (2) a transfer func-
tion between the stage displacement X(s) to the applied
voltage Em(s) is obtained as shown in (3).

P(s) =
X(s)
Em(s)

=
KampK f orce

s
[
Lms2 +(Rm+bL)s+(Rb+KBEMF K f orce)

] (3)

In this dynamic model, ripple forces of the permanent
magnet linear motor are neglected and linear bearings are
modeled as a viscous friction component. For the transfer
function of the plant shown in (3), viscous friction, and
amplifier gain are unknown. A series of experiments are
conducted to obtain a numerical expression for the transfer
function between input voltage, em, and slider displace-
ment, x. Based on (3), the transfer function of the single-
axis slider system can be given in more general form as

shown in (4) where GDC is the DC gain of the slider sys-
tem, ζ is the damping ratio, ωn is the natural frequency,
and τ is the time delay.

P(s) =
X(s)
Em(s)

=
GDCω2

n

s(s2 +2ζωns+ω2
n )

e−sτ (4)

In order to find the DC gain, GDC, open loop velocity (i.e.,
Ẋ(s)) step response of the plant can be used since there
is no free integrator in the transfer function relating the
velocity of slider to the applied voltage. In (5), the time
domain response solution, c(t), for an over-damped (ζ >
1) unity gain second order system is given when the in-
put function is the impulse function as reported in many
sources such as [24].

c(t) =
ωn

2
√

ζ 2 −1
e−(ζ−

√
ζ 2−1)ωnt

− ωn

2
√

ζ 2 −1
e−(ζ+

√
ζ 2−1)ωnt for t ≥ 0

(5)

The impulse response characteristics are examined
through series of experiments. The peak (allowable) input
value (10V) is applied for one time sample (30ms) emu-
lating an impulse input while the response is recorded. By
using this experimental data, and correlating the results
with (5), system characteristic parameters ζ and ωn are
found as 1.1 and 150rad/s respectively. The time delay,τ ,
is also estimated as 0.015s by observing the closed loop
step response for position loop and the controller output.
A remedy such as a Smith Predictor can be used to over-
come the negative effects of this delay. However since this
delay is well below the control loop rate of our system
(30ms), it is neglected during the controller design phase.
Using the mathematical model derived from identification
of the parameters in (4) a PID controller can be designed.

GC(s) = Kp +Ki
1
s
+Kds (6)

In (6), the transfer function for such controller is given
where Kp, Ki and Kd are the proportional, integral and
derivative constants, respectively. The design objective is
chosen such that the resulting closed loop transfer func-
tion for the slider speed simplifies to a first order transfer
function with unity gain as shown in (7) where Tα is the
desired time constant of the closed loop system response.

GC(s)P(s)
1+GC(s)P(s)

=
1

1+ sTα
(7)

Using the PID controller parameters given in (8) the first
order system given in (7) can be obtained.

KP =
2ζ

GDCTα ωn
,

Ki =
1

GDCTα
,

Kd =
1

GDCTα ω2
n

(8)
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Fig. 4. Tracking performance of the single axis slider.

The positioning performance of the single axis slider
system is evaluated with and without interpolation of the
encoder signals. In Fig. 4, the tracking performance of the
system for a reference input of 7mm is given. In order to
compare the tracking errors, the reference input is given
as an S-curve. The improved tracking performance of the
system is at sub-micrometer level. For the test ‘without
interpolation’, RMS of the tracking error is calculated as
312.14nm. When the encoder resolution is increased us-
ing the interpolation method, the same error is reduced to
121.53nm.

3. MULTI-AXIS CONTROL DESIGN

In this section, a multi-axis control design method
based on combining both CCC and ILC approaches is pre-
sented. Different contour error estimation techniques will
also be discussed. The improved method which combines
both approaches will be discussed at the last subsection.

3.1. Iterative learning control (ILC) via zero-phase fil-
tering

ILC is a technique for improving the transient response
of a system that performs the same task repeatedly under
similar conditions. ILC can often be used to achieve per-
fect tracking, even when the dynamic model is uncertain
or unknown and there is no information about the nonlin-
earities present in the system [13].

Using zero phase filtering is a practical and efficient
implementation of ILC [9]. The block diagram for ILC
with zero phase filtering for an individual axis is given in
Fig. 5. In this diagram, ui

f f , ui
f band yi are the feedforward

control signal, the feedback control signal and the system
output at the ith iteration, respectively. yd is the desired
system output which does not change between iterations
and e is the tracking error. The feedforward control signal
for the ith iteration is calculated using the feedforward and
feedback control signals of the previous iteration that are
shown as ui−1

f f and ui−1
f b , respectively. The learning update

Fig. 5. Block diagram of ILC via zero-phase filtering.

law can be given as

ui
f f (k) = uk−1

f f (k)+
γ

2M+1

M

∑
j=−M

ui−1
f b (k+ j) (9)

where k is the time index, γ is the learning gain and M is
the length index of zero phase filter. Detailed guidelines
for the design of parameters g and M can be found in [9].
For the system given in this study, M is used as 11 and γ
is taken as 0.2 giving the optimal learning performance.
Although choosing suitable M and γ values is crucial for
convergence, a suitable set of M and γ values can be used
for different reference inputs. Once these values obtained,
the same M and γ values are used in simulations and ex-
periments for each axis.

3.2. Cross-coupled control (CCC)
Cross-coupled control is a special type of multi-input-

multi-output (MIMO) control, which uses the contour er-
ror of the positioning system. The block diagram for a
cross coupled controller is given in Fig. 6. In this block
diagram, Cx and Cy are the coupling gains whereas ε , ex,
ey are the contour error, x-axis tracking error and y-axis
tracking error, respectively. The contour error, ε , is ob-
tained using (10).

ε =−Cxex +Cyey (10)

Fig. 6. Block diagram of the CCC system.
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Fig. 7. Geometrical relations of contour error.

Although CCC is first introduced with constant gains
[16], the term CCC is generally used for CCC with vari-
able coupling gains (i.e. Cx and Cy) as proposed in [14].
For a nonlinear contour, calculation of these gains is very
complicated and creates extra computational load in real-
time systems. Therefore, some contour error approxima-
tions are needed to simplify the coupling gain computa-
tion. For this purpose, Koren [14] proposed the circular
contour assumption. In this approach any arbitrary con-
tour is separated into parts with radius of curvature ρ and
these parts are approximated by circles.

The contour error vector approach can be explained us-
ing the geometrical relationships given in Fig. 7. In this
figure, −→t and −→n are the normalized tangential and normal
vectors respectively based on the actual position, P and the
reference position, R. The contouring error, −→ε , is defined
as the vector from the actual position to the nearest point
on the line that passes through the reference position tan-
gentially in the direction of −→t . This approach estimates
contour error vector very closely when tracking error is
small enough [21]. The estimated contour error,

−→̂
ε , is

equal to ⟨−→e ,−→n ⟩ where −→e is the tracking error and ⟨., .⟩ is
the inner product operator. The contour error is calculated
as

∣∣∣−→̂ε ∣∣∣= ∫
i Ciei (i = {x,y}) where Ci is coupling gain and

ei is the corresponding tracking error for each axis. By
equating the two representations of estimated contour er-
ror vector,

−→̂
ε , cross coupling gains (Cx, Cy) are found as

Ci= ni(i = {x,y}). In other words, cross coupling gains at
a specific point on the contour are the elements of −→n of
the contour at that point.

Although these two approaches for estimating contour
error give similar results in terms of contouring accuracy,
contour error vector method has several advantages over
the circular contour assumption. An extensive study on
the computational efficiency of the contour error vector
approach over the circular contour approach is given in
[21]. With the contour error approach, coupling gains can
be computed easier for an arbitrary contour making imple-
mentation of this approach in multi-axis systems straight-
forward. The use of individual vector elements rather than
a composite calculation using each axis information also

improves the modularity of the resulting controller.

3.3. The combined (modular ILC+CCC) method
For most positioning applications, designing a con-

troller with high tracking and contouring performance at
the same time is desirable. The two-axis positioning sys-
tem is designed such that two mechatronically modular
(i.e., identical hardware and software) single-axis stages
are assembled on top of each other as shown in Fig. 1.
Although this paper focuses on simulation and real time
control of two-axis system, control method developed is
applicable to multi-axis systems with any number of axes.
The use of ILC is important for the modularity since the
method compensates for changes after the assembly. For
example, when a stage is assembled on top of another,
weight of the sliding mass changes for the bottom slider.
Since there are only two design parameters in ILC via
zero-phase filtering, the implementation is also simple.
The contour error vector method is used with the CCC
since it is computationally more efficient and axis mod-
ular in nature. For the system used in this study, optical
encoder information is interpolated to achieve nanometer
resolution using software algorithms. There is a trade-off
between the resolution of the encoders and the computa-
tional effort in the control loop. Therefore, it is impor-
tant to minimize computational effort in the control loop
to maximize the encoder resolution.

A generalized block diagram of the proposed control
algorithm is given in Fig. 8. Parameters of the figure
are given in Table 1. The desired input trajectories are
provided to the system as the rd vector. Then, the ax-
ial tracking errors are found as the e vector and sent to
the feedback controller C f b. Also, the contour error, e is
calculated multiplying the transpose of the coupling gain
vector, CT , and the axial error vector. Contour error is sent
to the cross-coupled controller, Ccc, and the output is mul-
tiplied by coupling gain vector to find the cross coupled

Table 1. Parameters (NS is the number of samples)

Symbol Description (Dimensions)
rd = [xd ,yd ]

T desired input trajectory (2xNS)
r = [x,y]T output trajectory (2xNS)
e = [ex,ey]

T axial tracking error (2xNS)
eu = [eux,euy]T uncoupled axial tracking error

(2xNS)
ui = [ui

x,u
i
y]

T axial driving signal at ith iteration
(2xNS)

ui
f f = [ui

f f x,u
i
f f y]

T combined control signal (2xNS)
C = [Cx,Cy]

T coupling gains (2x1)
C f b =
diag{C f bx,C f by}

feedback controller matrix (2x2)

P = diag{Px,Py} controlled plant (2x2)
Ccc cross-coupled controller (1x1)
γ learning gain
h′m∗ alg. averager for ILC
ε contour error (1xNS)
εu uncoupled contour error (1xNS)
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Fig. 8. Block diagram for the combined (ILC+CCC) con-
trol method.

control input for each axis. After adding the cross-coupled
control signal to the feedback control signal, the combined
signal, u f b

i,is send to the iterative learning controller to
the filter, (h’m) and stored to be used in the next itera-
tion. The feed-forward control signal, u f f

i, is added to
the combined signal and given to the plant. The expected
benefits of the method described here is good tracking per-
formance (due to ILC features) and good contouring per-
formance (due to the application of CCC) with low com-
putational effort which is applicable to systems with any
number axis.

4. STABILITY AND CONVERGENCE ANALYSIS

Analyzing the stability and convergence of a new con-
trol method is important for safe implementation in real
systems. The proposed control system consists of three
parts: (1) The feedback controllers for each axis, (2) A
cross-coupled controller for axis interactions and (3) Iter-
ative learning controllers for each axis.

A stabilizing controller can be designed for each sin-
gleaxis slider using conventional control design meth-
ods. Then, a stable cross-coupled controller should be
designed. For cross-coupled systems, stability can be ana-
lyzed through a term called contour error transfer function
(CETF). The CETF is the relationship between a coupled
and uncoupled system. Coupled system refers to a system
controlled by a cross-coupled controller and uncoupled
system refers to the same system only without the cross-
coupled controller. Both coupled and uncoupled systems
are considered without the ILC first. To derive the CETF,
contour error should be derived without the CCC and with
the CCC as εu and ε , respectively based on the system
given in Fig. 6. The axial errors in the uncoupled system,
eu, (i.e. Ccc = 0) is defined as

eu = rd − r = rd −PC f beu

= (I +PC f b)
−1rd

(11)

The term (I+PC f b)−1 exists since both P and C are diag-
onal matrices with nonzero elements. Then, the formula-
tion for the uncoupled contour error, εu, can be obtained

as shown in (12).

εu =CT eu =CT (I +PC f b)
−1rd (12)

To calculate the coupled contour error, ε , first the coupled
axial error, e, (i.e., Ccc ̸=0) is found as shown in (13).Then
this error is multiplied by the coupling gains as given in
(14).

e = rd − r

= rd −P(C f be+CCccCT e)

= (I +PC f b +PCCccCT )−1rd

(13)

ε =CT e =CT (I +PC f b +PCCccCT )−1rd (14)

CETF, H, is defined as the relationship between uncoupled
and coupled systems as shown in (15).

ε = Hεu (15)

Using (12), (15) can be written as

Hεu = HCT (I +PC f b)
−1rd (16)

Then, using (14) and (16), (17) can be obtained.

CT ((I +PC f b)+PCCccCT )−1 = HCT (I +PC f b)
−1 (17)

By using the matrix inversion lemma

CT ((I +PC f b)+PCCccCT )−1 =

CT (I +(I +PC f b)
−1PCCccCT )−1(I +PC f b)

−1 (18)

Equations can further be simplified to find H as in (21):

CT (I +(I +PC f b)
−1PCCccCT )−1 = HCT (19)

CT = H(CT +CT (I +PC f b)
−1PCCccCT ) (20)

H = (I +CT (I +PC f b)
−1PCCcc)

−1 (21)

Since H is a transfer function with one dimension (21) can
be re-written as

H =
1

1+CT (I +PC f b)−1PCCcc
=

1
1+PeCcc

, (22)

where Pe = CT (I+PC f b)−1PC can be considered as an
equivalent controlled plant. The gain values in C change
between -1 and 1 throughout the motion. Therefore, the
equivalent controlled plant has varying parameters. Al-
though these gains change during the motion, they do not
vary between iterations because they are used for the same
reference contour. Since the CETF, H, can be considered
as the sensitivity function of the (Ccc, Pe) system as shown
in (22), the cross-coupled controller can be designed us-
ing conventional robust single-input-single-output control
methods. Therefore, a stabilizing controller Ccc can be



Design and Analysis of A Modular Learning Based Cross-Coupled Control Algorithm for Multi-Axis Precision ... 55

designed for this system using traditional feedback stabil-
ity and robustness techniques after each single-axis loop is
designed to be stable. Moreover, according to the theorem
given in [25], the cross-coupled system is internally stable
if the single-axis feedback controllers achieve internal sta-
bility for each axis and the cross-coupled controller keeps
the equivalent control system (Ccc, Pe) internally stable
while the coupling gains vary.

Convergence of the ILC via zero phase filtering on a
cross-coupled system can be shown by extending the con-
vergence analysis for the single-axis system given in [9] or
other researchers such as [26]. For the convergence analy-
sis, some assumptions should be made. Firstly, single-axis
plants and the cross-coupled control system should inter-
nally stable. Furthermore, the number of inputs should
be equal to the number outputs in the system. There
should be a unique desired input ud for a desired tra-
jectory rd . Considering control signals as an indication
of plant dynamics, ui can be separated into its repeat-
able and non-repeatable components as uR

d and uNR
i (i.e.,

ui=uR
d+uNR

i), respectively where the non-repeatable part
is bounded by hm’*uNR

i ≤ε∗ for ∀i where * is the convo-
lution operator.

If the given assumptions are satisfied and the task is
performed repeatedly, u f f

i approaches uR
d as i increases

when ε*→0. In real applications, ε* is small and can be
assumed as 0. Therefore, as ε* goes to zero (23) is satis-
fied.

ui = ud
R +ui

NR (23)

In the proposed control structure, ILC via zero phase
filtering is used for all single-axis loops. Since each axis
tracking is convergent, the contour error is also conver-
gent. Convergence analysis for simulations and experi-
ments are performed for the trajectories given in Section
V. Convergence of the RMS (root mean square) contour
error is shown in Fig. 9 for both simulation and experi-
ment. In Part (a) of Fig. 9 RMS contour error for simu-
lations converges to a value which is very close to zero.
For the experiments (Fig. 9 (b)), convergence is not as
smooth as the simulations due to unrepeated disturbances
and nonlinearities. The RMS contour error converges to a
value around 30nm. Convergence to 30nm RMS contour
error value can be considered as an acceptable result since
the encoder resolution used for the experiments is 25nm.

5. SIMULATION RESULTS

To investigate the performance of the two-axis posi-
tioning system a detailed simulation analysis is done.
In the simulations, velocity profiling approach has been
used to generate individual axis reference trajectories. A
generic S-curve method is employed for this purpose. The
two-axis positioning system is simulated with a nonlin-
ear contour as the desired input. The cross coupling gains

(i.e. Cis), are equal to the normal vector elements of the
contour. For comparison of the performances the plant
model is simulated with feedback control only (FB), feed-
back control with cross-coupled control (FB CCC), feed-
back control with iterative learning control (FB ILC) and
feedback control with cross-coupled control and iterative
learning control with zero phase filter (FB CCC ILC). The
performance of all of these control schemes are summa-
rized in Table 2. In the table, root mean square (RMS)
of the error signals has been used. As expected from our
earlier derivations the worst positioning performance of
the system is obtained when only the feedback controller
is used. Then, the axis performance is improved drasti-
cally when the ILC is introduced. As the last addition, it
can be observed that combining ILC and CCC with FB
(i.e., our method) gives the best results as expected. This
combination benefits from both tracking performance im-
provements of using ILC and contouring performance im-
provements of using CCC.

The nonlinear contour used in simulations is given in
Fig. 10(a) at the top portion of the plot. In the figure,
the zoomed view is taken from the part with a turn that is
shown with the box on the original contour because con-
tour tracking is more challenging during turns. The fig-
ure shows contouring performance of the system for the
nonlinear contour is improved significantly when the pro-
posed method (FB CCC ILC) is used instead of only the
feedback (FB) control.

(a)

(b)

Fig. 9. RMS contour error for (a) simulation and (b) ex-
periment.
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Table 2. Two-axis System simulation - RMS error values

RMS Error x-axis y-axis contour
FB 11.30 111.27 29.04

FB CCC 15.42 110.65 32.36
FB ILC 3.47 2.17 2.73

FB CCC ILC 1.09 2.11 0.78

6. EXPERIMENTAL RESULTS

For the system shown in Fig. 1 and Fig. 2 an exper-
imental study was conducted to see the real life perfor-
mance of the system with the proposed control approach.
In order to validate our position measurements externally,
a test setup is prepared using a two-arm differential laser
vibrometer with 3nm measurement resolution. One of the
laser arms is directed to the stationary part of the slider as
the reference and the other arm is positioned to point at the
moving part of the slider system as shown in Fig.11. The
same contour with the same velocity profile, which is used
for simulations, is also used for the experiments. The con-
tour tracking of the two-axis system with only feedback
(FB) control and feedback control with CCC and ILC with
zero phase filter (FB CCC ILC) is given in Fig. 10. The
figure shows proposed control design improved contour-
ing performance considerably. When Parts (a) and (b) of
Fig. 10 is compared, simulations and experiments present
a similar behavior such as deteriorated contour control just
after the turn. FB CCC ILC system gives better contouring
result than FB only in both cases. Due to the unmodelled
dynamics and disturbances in the experiment setup, FB
CCC ILC design does not improve the contouring perfor-
mance as much as it does in the simulations.

In order to compare the experimental results with the
simulation work presented in the previous subsection, fur-
ther experiments conducted with using feedback control
(FB), feedback control with cross-coupled control (FB
CCC), feedback control with iterative learning control
(FB ILC) and feedback control with cross-coupled control
and iterative learning control (FB CCC ILC). Variation of
RMS single-axis errors and RMS contour error with the
different control schemes are given in Table 3. From Ta-
ble 3, it can be observed that FB CCC system decreases
contour error significantly as well as improvements in ax-
ial errors. Similarly, FB ILC system decreases axial track-
ing errors more effectively than contour error as expected.
Best tracking and contouring performance is obtained for
FB CCC ILC system as for the simulation case. All ax-
ial tracking errors and the contour error is improved ap-
proximately by 50% as compared to the case where only
feedback control is used.

7. CONCLUSION

In this paper, a new method that combines cross-
coupled control and iterative learning control approaches

Fig. 10. (a) Simulation and (b) experimental results of
two-axis system for the nonlinear contour.

Fig. 11. External validation of axis position data.

Table 3. Two-axis system experiments - RMS error val-
ues

RMS Error x-axis y-axis contour
FB 46.84 113.05 57.08

FB CCC 42.06 94.66 43.49
FB ILC 25.81 79.14 39.33

FB CCC ILC 21.28 66.69 27.52
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which improves the contour and the tracking accuracy of
the positioning systems at the same time is presented. Im-
proving tracking accuracy

generally increases the contour performance except for
the cases where the system dynamics interactions and fric-
tion effects dominate. Our method is computationally
more efficient, more suitable for coupling gain calcula-
tions of arbitrary nonlinear contour and easier to imple-
ment on multi-axis positioning systems with increased
mechatronic modularity. This stage system is modular
in the sense that multiple identical stages can be assem-
bled together to form positioning systems without chang-
ing the stage control algorithm (i.e., mechatronic modu-
larity). The increased modularity of the system compared
to similar solutions is important since it improves desired
lifecycle properties such as maintainability, upgradabil-
ity, diagnosability of a system. Stability and convergence
analysis of the proposed controller is provided. Tracking
and contouring performance of the method on a nonlinear
contour is verified through simulations and experiments.
The controller achieves nanometer level accuracy for the
two-axis system. In the experiments, RMS error of x-axis,
RMS error of y-axis and RMS contour error of the two-
axis system is decreased to 21nm, 66nm and 27nm respec-
tively. This result is substantial improvement over using
only a feedback controller for each stage which results in
error values of 46.84nm, 113.05nm and 57.08nm respec-
tively. As future work the proposed multi-axis controller
will be implemented on a three-axis system and axis con-
troller will be improved.
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