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Solid Rocket Propellant Design
7 )

Thrust

Time

Geometry design with single material is not enough to
achieve both desired thrust and eliminate insulation !!
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General Material Design Optimization Pipeline

s.t. - gi(F) <0

I

Costly analysis! Difficult to derive analytical gradients

(I) (.F ) — O Complex physics! Numerical gradients are not practical
Maybe black box! for large scale problems



Model reduction approach to reduce number of optimization
variables
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Represent the field as a combination of
small set of basis functions!

F = Bw

Reduce number of design variables
without compromising analysis quality!

thousand-millions tens-hundreds



Representing Material Distributions Using Shape Harmonics

® [ourier expansion of signal into harmonics (Sin + Cos
functions) can be applied to manifold decomposition

® [-ourier bases are eigenfunctions of the Laplacian on
the unit interval

® Spherical harmonics are eigenfunctions of the
Laplacian on the sphere

)\’ie’i — Ee’i B = [617627 "°7ek]

10k quad mesh 8 weights

® |dea can be generalized to harmonics over any manifolo

We represent a field with fewer parameters

® \/\leighted sum of manifold harmonic basis can be used : : :
using Laplacian basis

to describe shape and material in a ‘frequency domain’



Key Observation

low frequency high frequency
basis functions
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Sliding Basis Optimization
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Sliding Basis Optimization




Sliding Basis Optimization

all bases used to represent the field

actively optimized bases

‘ ) i
(l " - ¢ - ‘g / &

We usually get convergence using only a small set of basis functions!




oliding basis optimization is a top level framework
that works with existing optimization methods

Algorithm 1: Shiding basis optimization

Input: n,,r. ng, Sax
Output: Optimized basis weights, w

i < 0 > Index for the first active basis set
it, — 0

f—1/e

W @ > Optimized basis weights
while not converged or it; < s,,,, do

w, « Imtalize()

it f — f, > € then
w e [wl0:iy], w]
< 7fs

it, «— 0

else
w «— [w, 0]
ity «— it, + 1
end
l'_-,'b — isb + 1,

end

> Sliding iteration
> A large number

> Weights for active basis [unctions

This optimize step can be implemented
using general nonlinear optimizers



oliding basis optimization speeds up differentiable problems, too

If gradients are derived

f(?lll resolution
min - f(w) of |ofloF

s.t.  gi(w) <0 Jw [ 0F Ow

N\

Gradients w.rt. basis weights can be found
through simple matrix multiplication with B

F = Bw




Solid Rocket Fuel Design

material distribution

burn surface
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oliding Basis Optimization

Inputs Compute Basis Functions Optimization Output
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Progression of thrust profile match through the sliding basis optimization

First 20 basis
— basis functions
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Progression of thrust profile match through the sliding basis optimization

20 active basis
basis functions
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Progression of thrust profile match through the sliding basis optimization

20 active basis
basis functions
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Slide by 15
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Progression of thrust profile match through the sliding basis optimization

20 active basis
basis functions
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Progression of thrust profile match through the sliding basis optimization

20 active basis
basis functions
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Progression of thrust profile match through the sliding basis optimization

20 active basis
basis functions
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Progression of thrust profile match through the sliding basis optimization
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Optimized Solid Rocket Fuel Designs
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Optimized Solid Rocket Fuel Designs

0.254x10-2 burnrate [m/sec] 1.52x10-2 Graded material ﬁEIdS!
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Performance

Ns  Nopt Sliding Basis

— basis functions

total basis

Fixed Basis (Already Reduced Order!!)

Fixed Basis Sliding Basis
Thrust Profile Time @ |Objective/Error| Time @ | Objective/Error
Constant Acceleration 1178s 349k/2.3% 288s 86k/1.1%
Constant Deceleration 48965 867k/3.4% 621s 452k/2.7%
Two Step 191s 102k/1.1% 69s 217k/1.4%
Bucket 1006s 272k/1.8% 596s 272k/1.8%

Upto 8x speed up Comparable objective values



Multi-material Topology Optimization
Through Sliding Optimization Steps

\/ min u’ K(w)u

w

s.t. m(w)/mo < Mirgc

BoGPa  W3GPa K(w)u=F




Multi-material Topology Optimization
Through Sliding Optimization Steps

:

BoGPa [3GPa




Multi-material Topology Optimization
Through Sliding Optimization Steps

( » Complexity increases as high
frequency bases are incorporated!

> Discrete material fields!

BoGPa [3GPa

- - |
basis functions



Material Distribution Optimization




Conventional VS Reduced Order
/ \

Optimize for each pixel Optimize for weights of the Laplacian basis
(Qurs)
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Reduced Order Faster




basis functions

tffect of sliding amount, ng |- ===
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A Versatile Design Optimization Tool

[he main contributions of the presented work:

® An optimization technigue we call sliding basis optimization to
efficiently explore parameterized design space

® Practical material design method with prescrioed pounads using
L aplacian pasis

® Enabling optimization of material distributions for new applications
coupled with black-box analysis



Recent Developments

Sliding basis topology optimization - a modular system

l

MBB problem

Sliding Basis Topology Optimization Conventional Topology Optimization (TOP88)
Using 50 Bases Using 10k elements

Compliance objective: 302.2 Compliance objective: 287.8

Goal is not to match the geometry but achieve comparable performance faster!!



oliding

Thank you!
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Sasis Optimization for Heterogeneous Materia
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Graph Laplacian
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Output distribution

Input distribution

Material Properties

Density
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Fixed Basis Sliding Basis
Thrust Profile Nopt 1 Nyaiges  lotal Basis Time Objective/Error  Time  Objective/Error
Constant Acceleration 20 15 14 230 1178s 349k/2.3% 288s 86k/1.1%
Constant Deceleration 50 40 7 320 48965 867k/3.4% 621s 452k/2.7%
Two Step 20 15 7 125 191s 102k/1.1% 69s 217k/1.4%
Bucket 20 15 24 380 1006s 272K/1.8% 596s 272K/1.8%




Why not automatic differentiation?

® \umerical differentiation is already Implemented and dsfault option In many
optimization software.

® SUt our approacnh can also work with automatic difterentiation.

® Une disadvantage of automatic differentiation Is that it cannot be used with truly
DlacK-DoX components.



