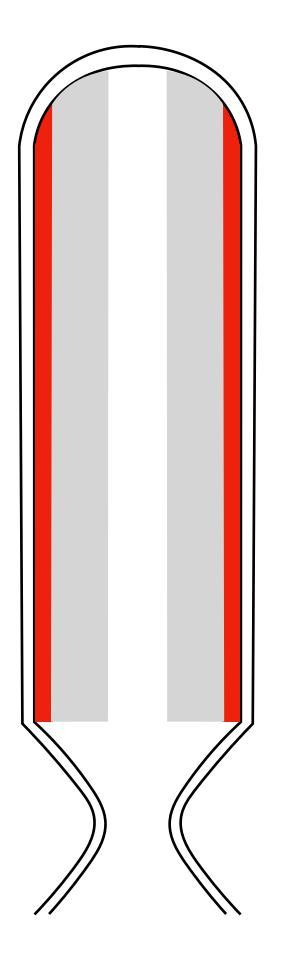


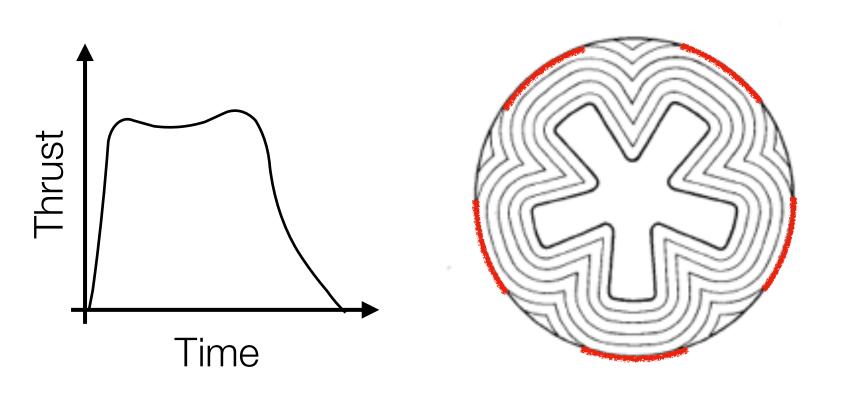
Sliding Basis Optimization for Heterogeneous Material Design

Nurcan Gecer Ulu, Svyatoslav Korneev, Erva Ulu, Saigopal Nelaturi

Palo Alto Research Center

Solid Rocket Propellant Design



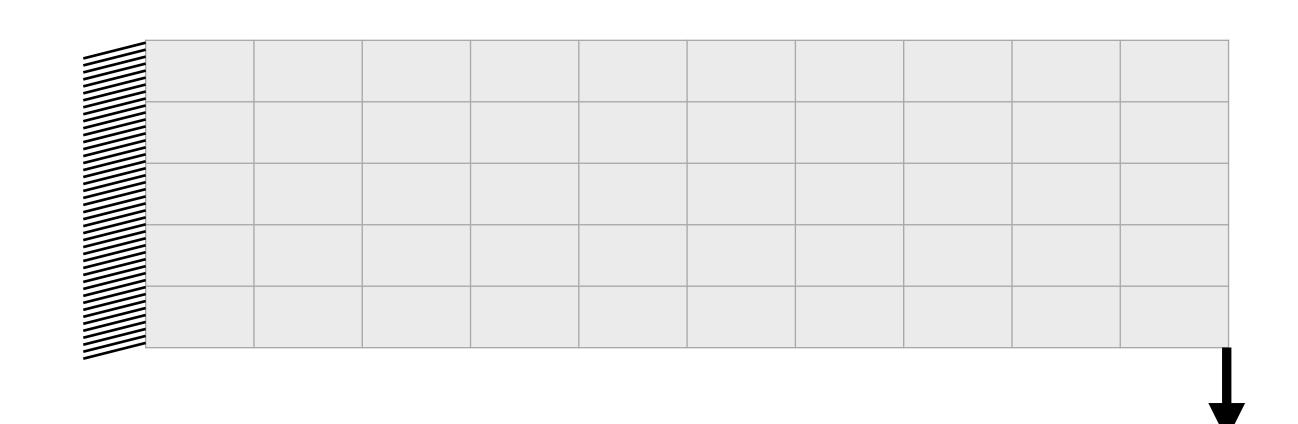


Geometry design with single material is not enough to achieve both desired thrust and eliminate insulation!!

General Material Design Optimization Pipeline

$$\min_{\mathcal{F}} f(\mathcal{F})$$

s.t.
$$g_i(\mathcal{F}) \leq 0$$



$$\Phi(\mathcal{F}) = 0$$
 Costly analysis! Complex physics! Maybe black box!

Difficult to derive analytical gradients Numerical gradients are not practical for large scale problems

Model reduction approach to reduce number of optimization variables

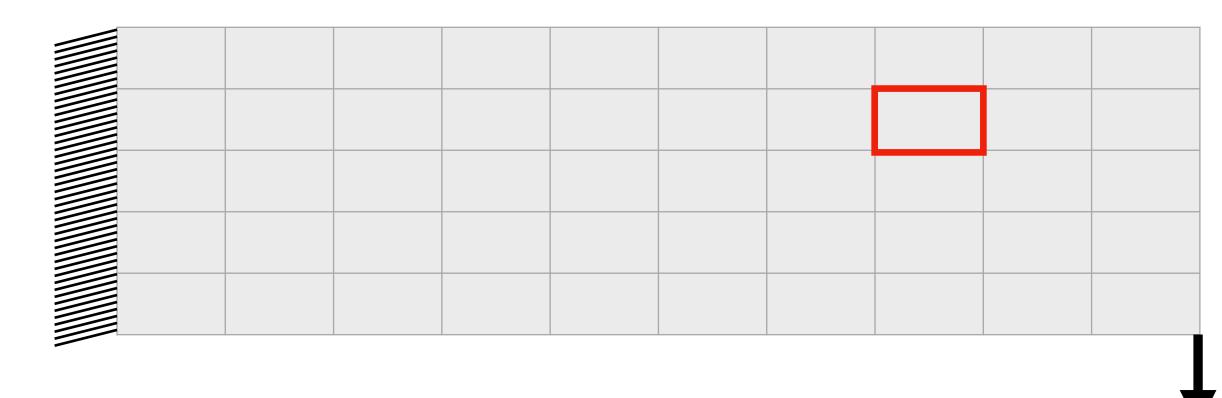
$$\min_{\mathcal{F}} f(\mathcal{F}) \qquad \min_{\mathbf{w}} f(\mathbf{w})$$
s.t. $g_i(\mathcal{F}) \leq 0 \longrightarrow \text{s.t.} \quad g_i(\mathbf{w}) \leq 0$

$$\Phi(\mathcal{F}) = 0$$

$$\Phi(\boldsymbol{w}) = 0$$

thousand-millions

tens-hundreds



Represent the field as a combination of small set of basis functions!

$$\mathcal{F} = Bw$$

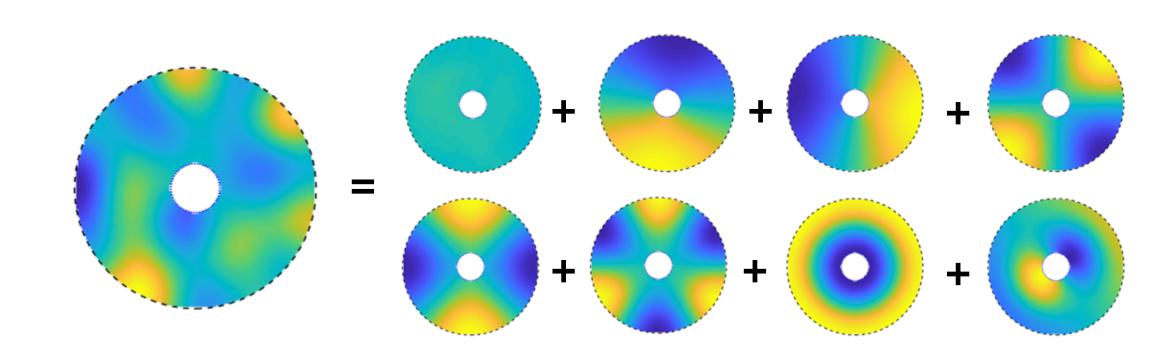
Reduce number of design variables without compromising analysis quality!

Representing Material Distributions Using Shape Harmonics

- Fourier expansion of signal into harmonics (sin + cos functions) can be applied to manifold decomposition
- Fourier bases are eigenfunctions of the Laplacian on the unit interval
- Spherical harmonics are eigenfunctions of the Laplacian on the sphere

$$\lambda_i e_i = \mathcal{L} e_i \quad B = [e_1, e_2, ..., e_k]$$

- Idea can be generalized to harmonics over any manifold
- Weighted sum of manifold harmonic basis can be used to describe shape and material in a 'frequency domain'



$${\cal F}=Bw$$
10k quad mesh 8 weights

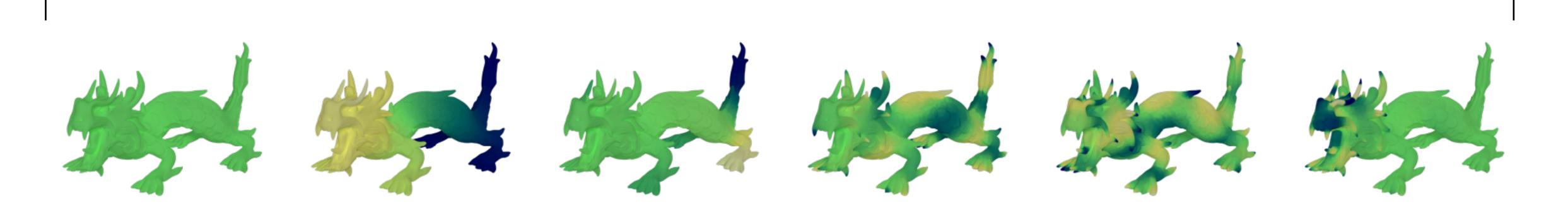
We represent a field with fewer parameters using Laplacian basis

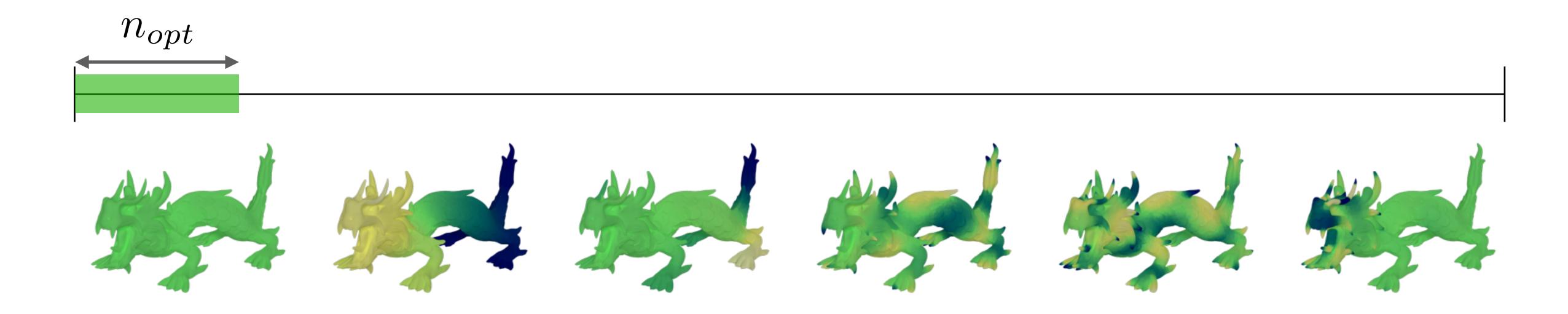
Key Observation

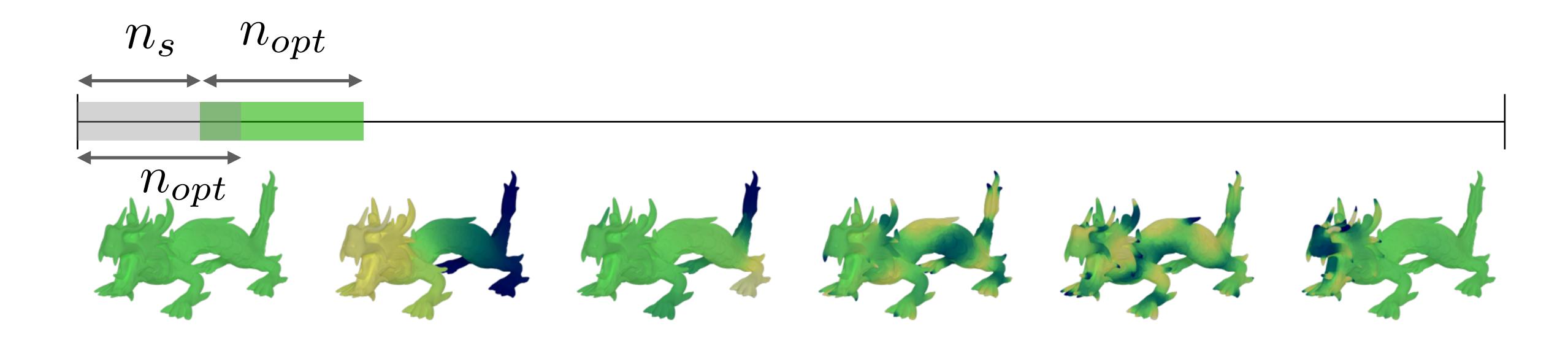
low frequency

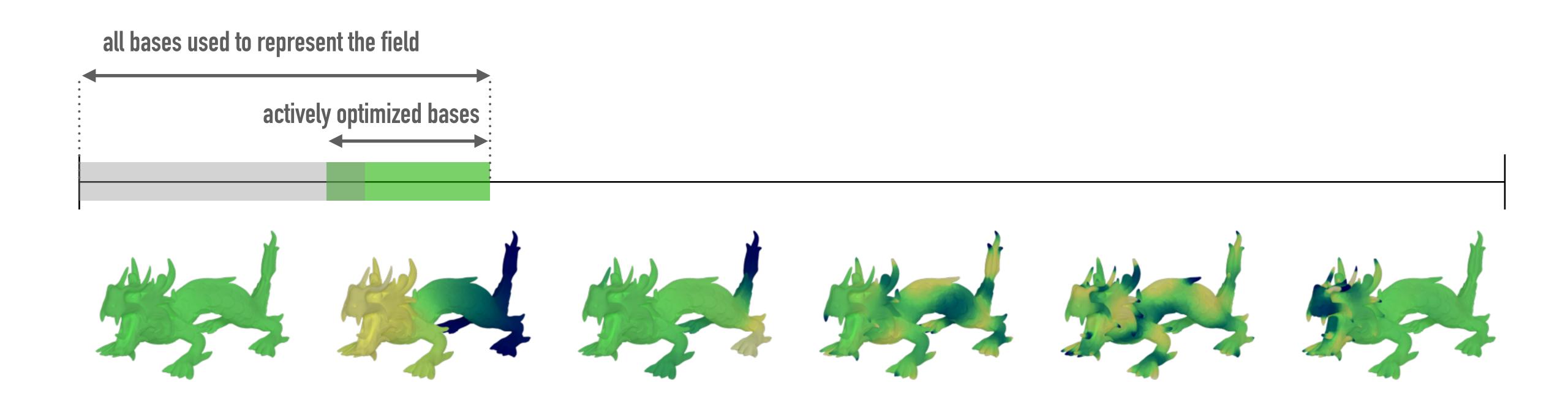
high frequency

basis functions









We usually get convergence using only a small set of basis functions!

Sliding basis optimization is a top level framework that works with existing optimization methods

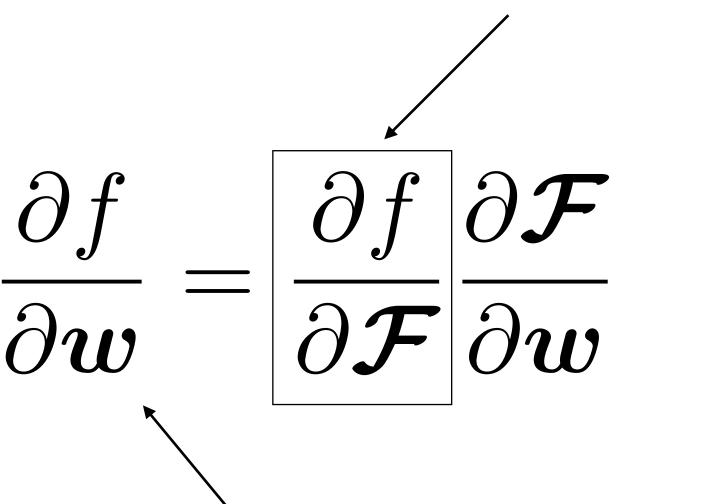
```
Algorithm 1: Sliding basis optimization
 Input: n_{opt}, n_s, s_{max}
 Output: Optimized basis weights, w
                                          ▶ Index for the first active basis set
 i_{sb} \leftarrow 0
                                                                  ▶ Sliding iteration
 it_s \leftarrow 0
                                                                  ▶ A large number
 f \leftarrow 1/\epsilon
                                                      ▶ Optimized basis weights
 w \leftarrow \varnothing
 while not converged or it_s < s_{max} do
       w_s \leftarrow \text{Initialize}() \triangleright Weights for active basis functions
    (\mathbf{w}_s, f_s) \leftarrow \text{Optimize}(i_{sb}, n_{opt})
      if f - f_s \ge \epsilon then
             \mathbf{w} \leftarrow [\mathbf{w}[0:i_{sb}], \mathbf{w}_s]
             w \leftarrow [w, 0]
           it_s \leftarrow it_s + 1
```

This optimize step can be implemented using general nonlinear optimizers

Sliding basis optimization speeds up differentiable problems, too

s.t. $g_i(w) \leq 0$

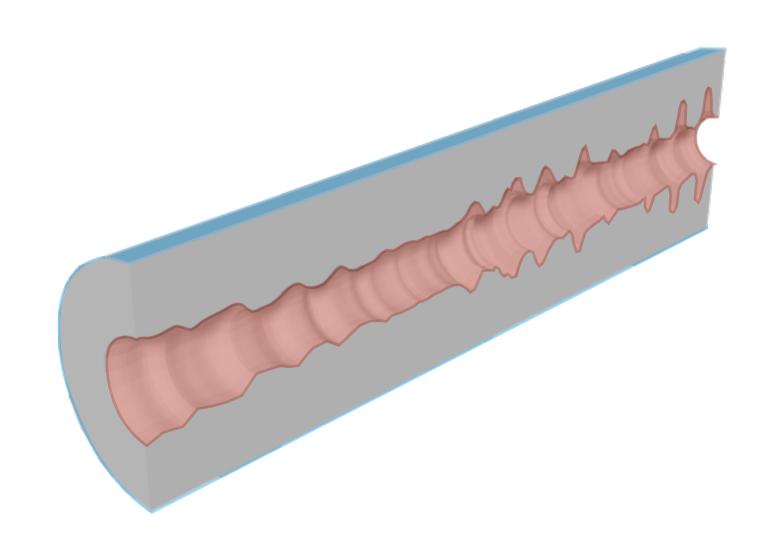
If gradients are derived for the full resolution



Gradients w.r.t. basis weights can be found through simple matrix multiplication with B

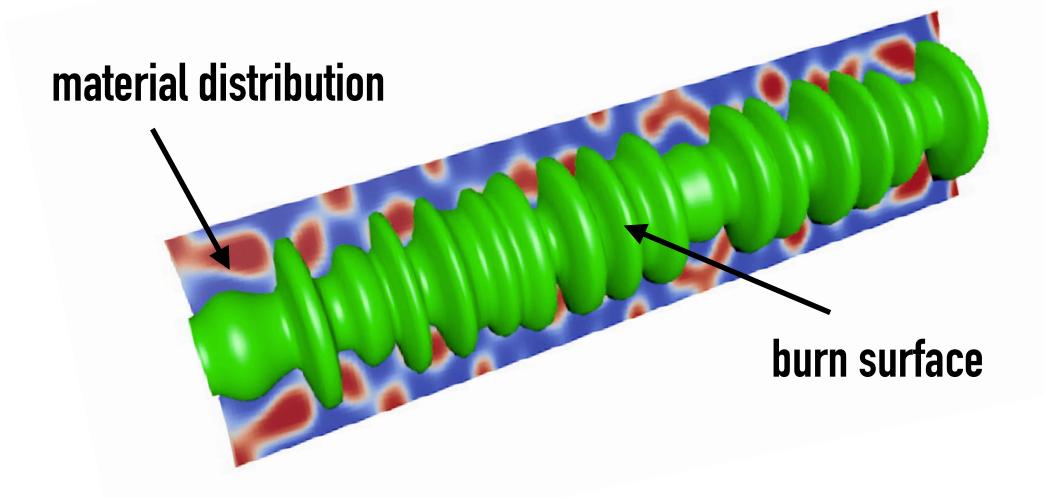
$$\mathcal{F} = Bw$$

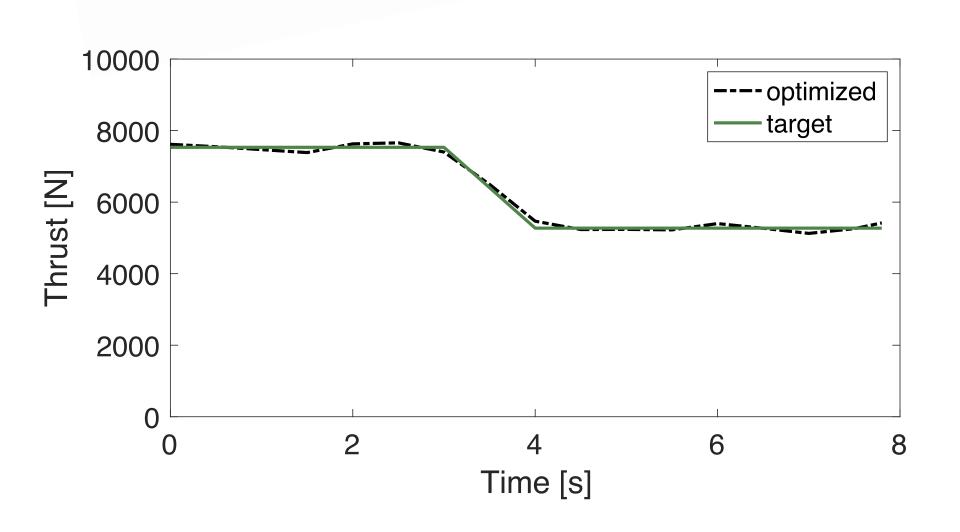
Solid Rocket Fuel Design

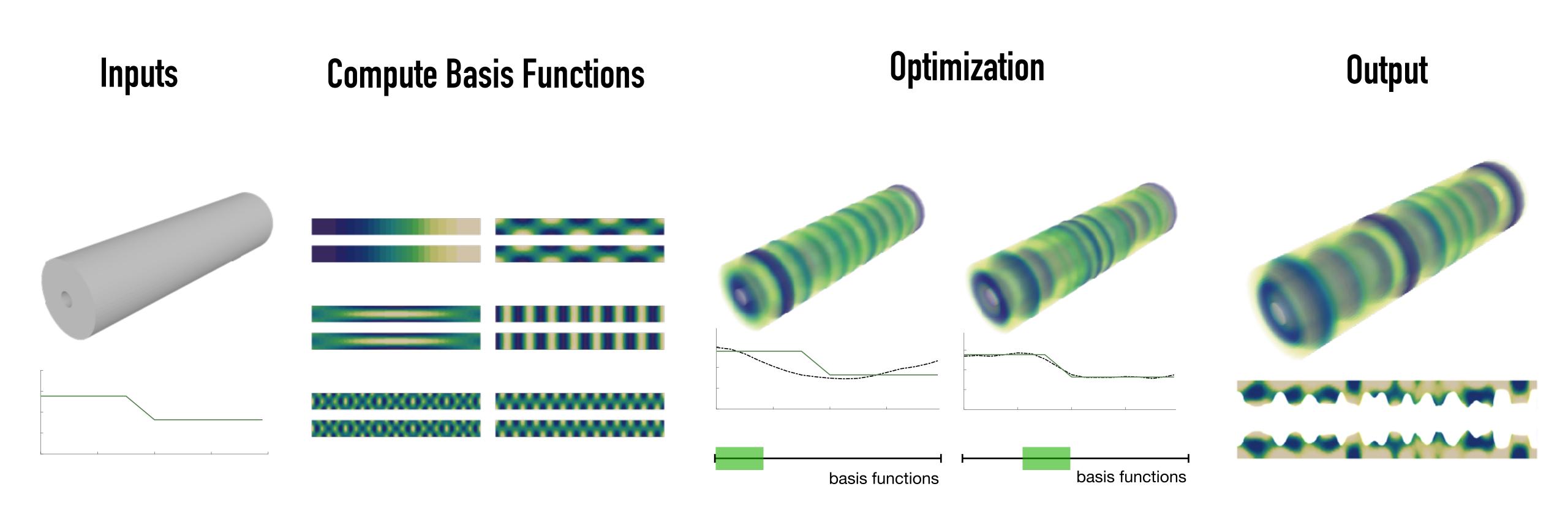


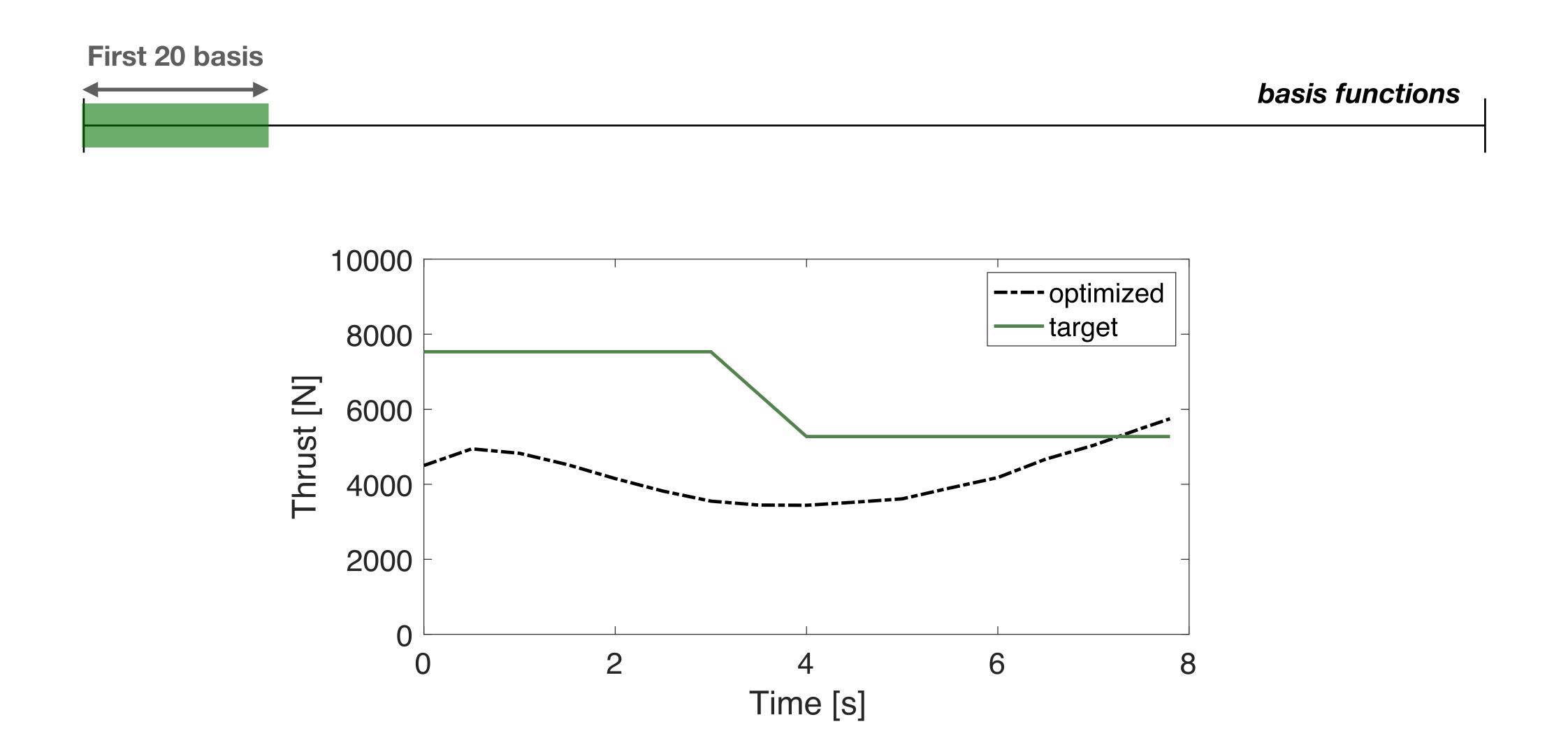
$$\min_{\boldsymbol{w}} \quad \sum_{t} (th(\boldsymbol{w}) - th_{target})^2$$

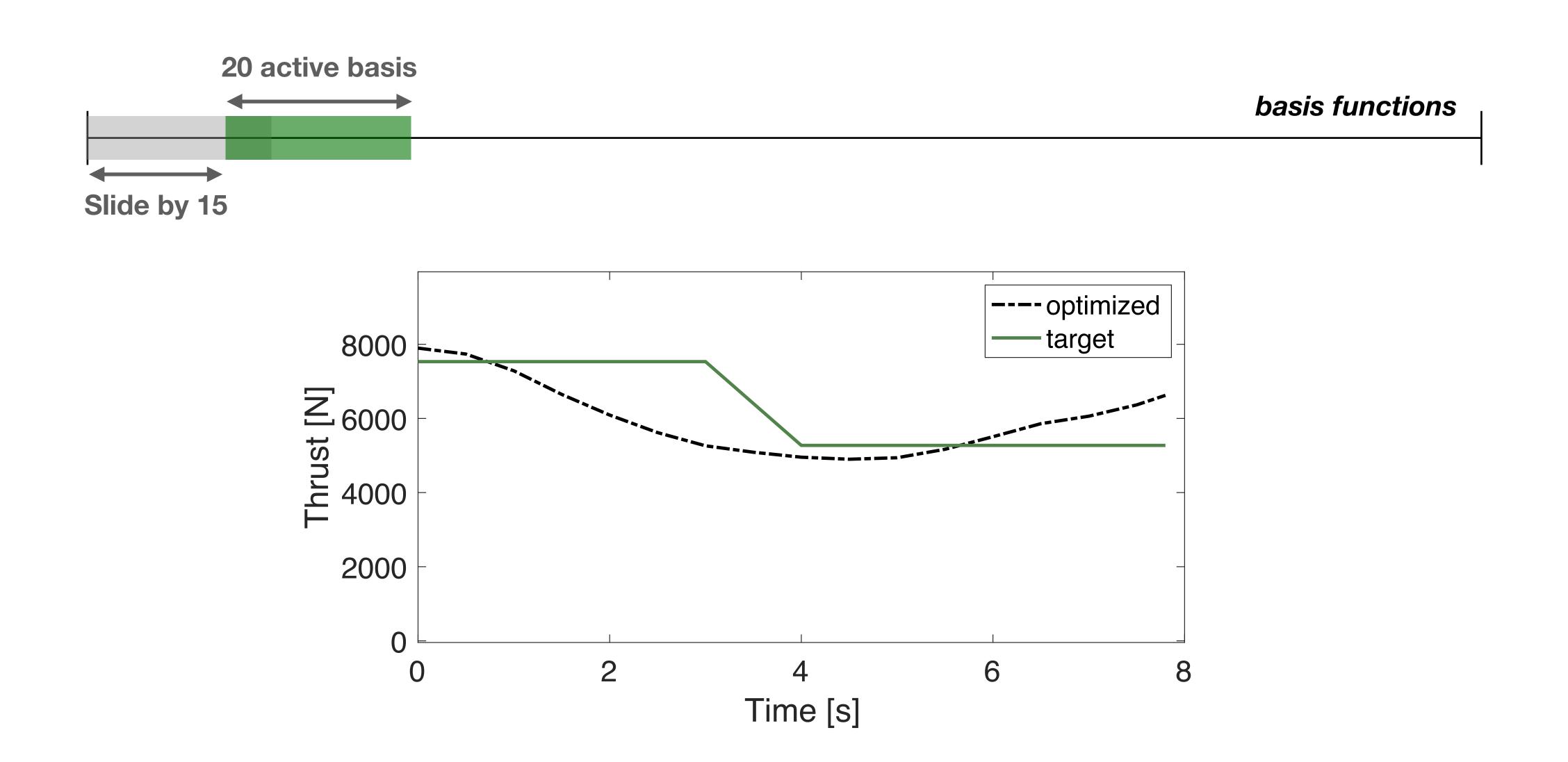
s.t.
$$r_b(\boldsymbol{w})^i > r_{in}$$

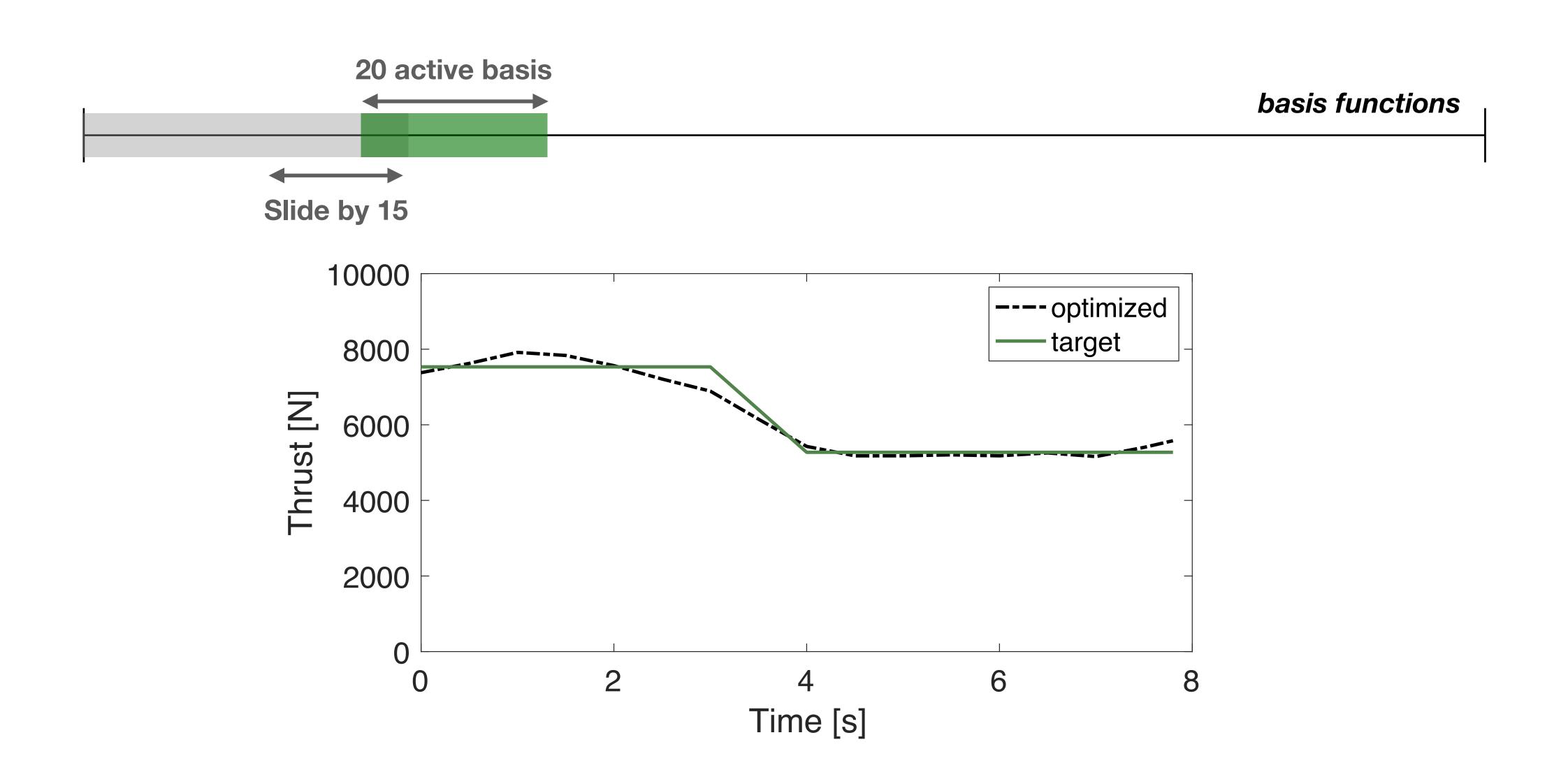


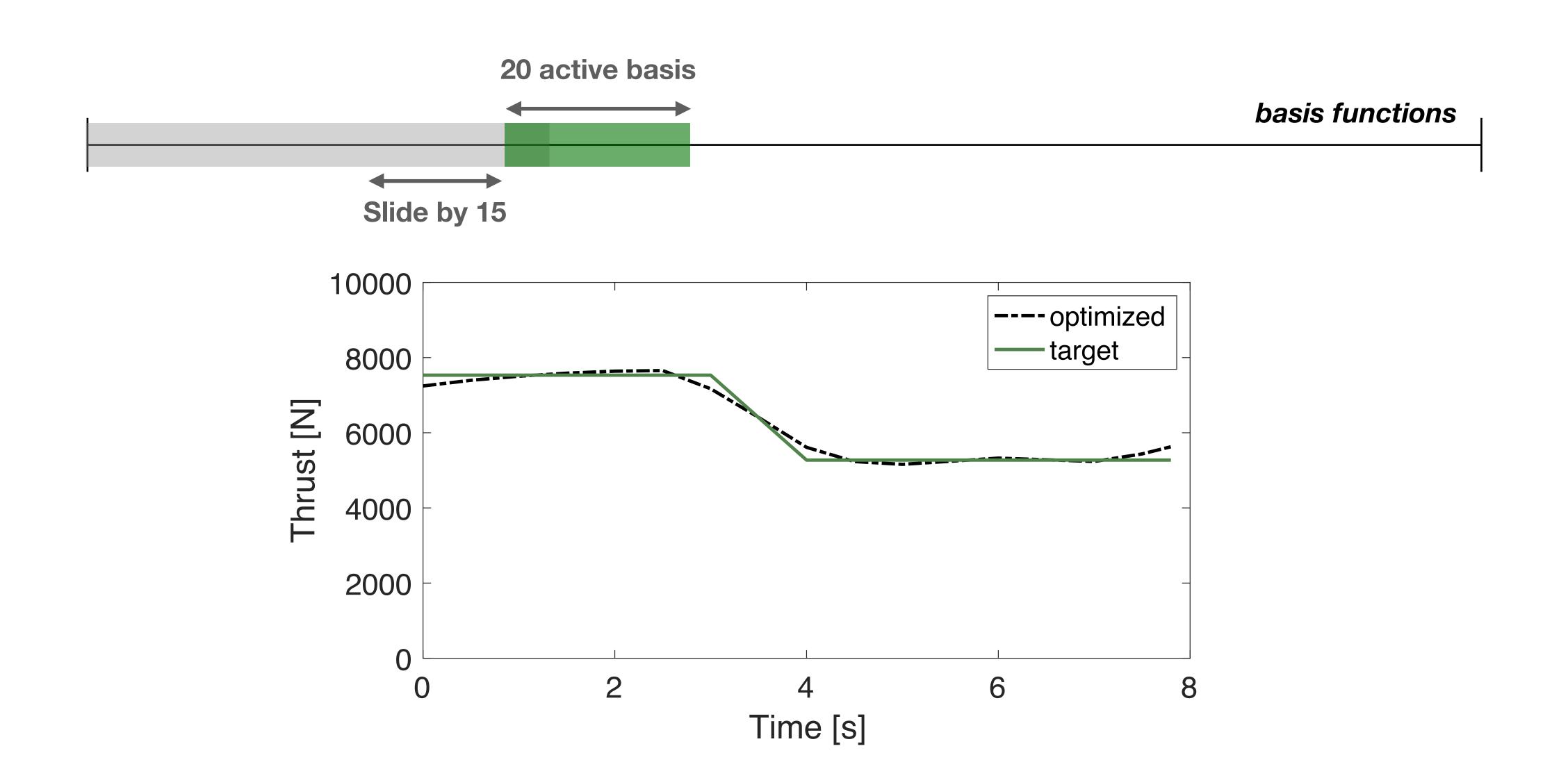


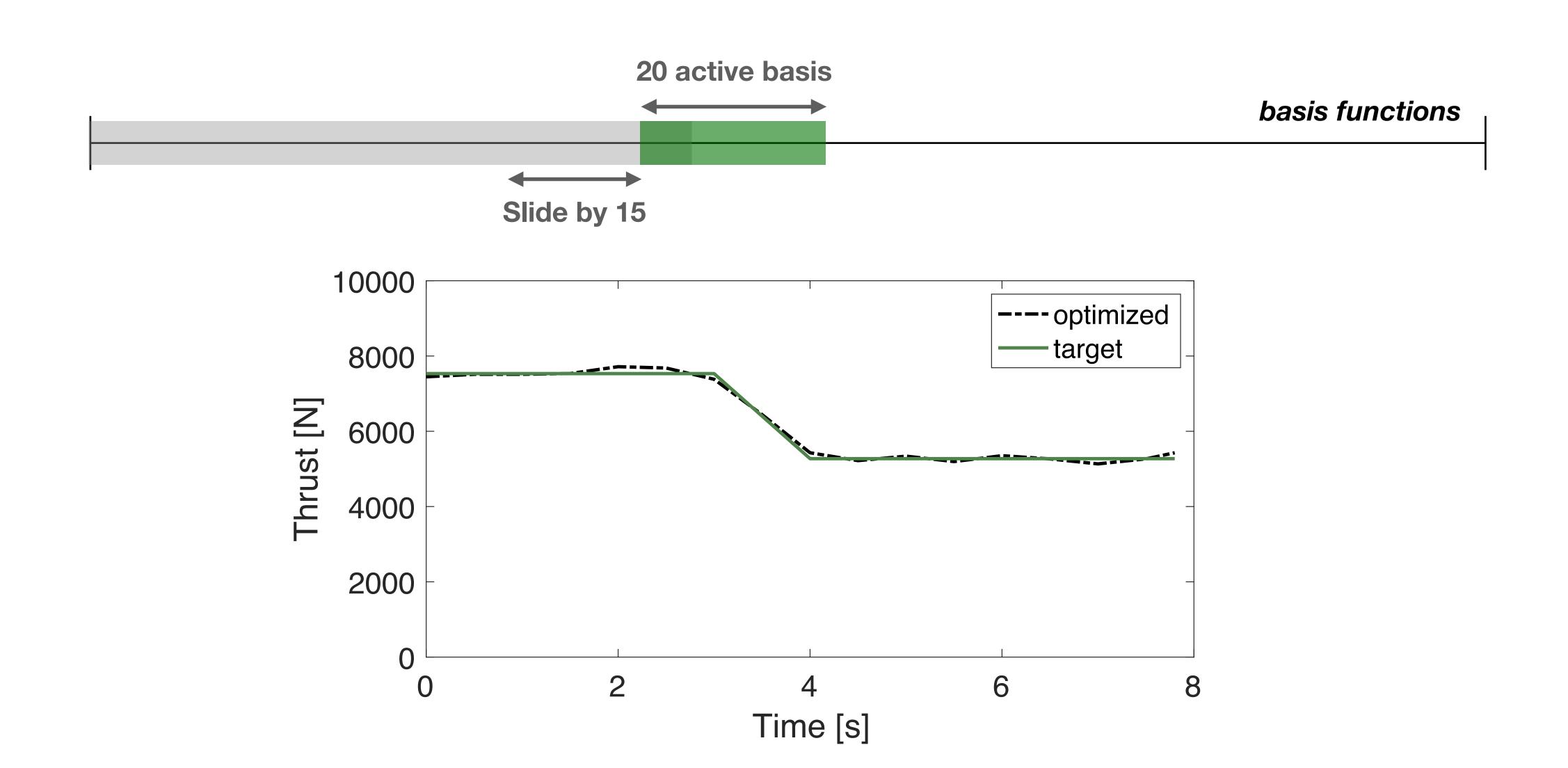


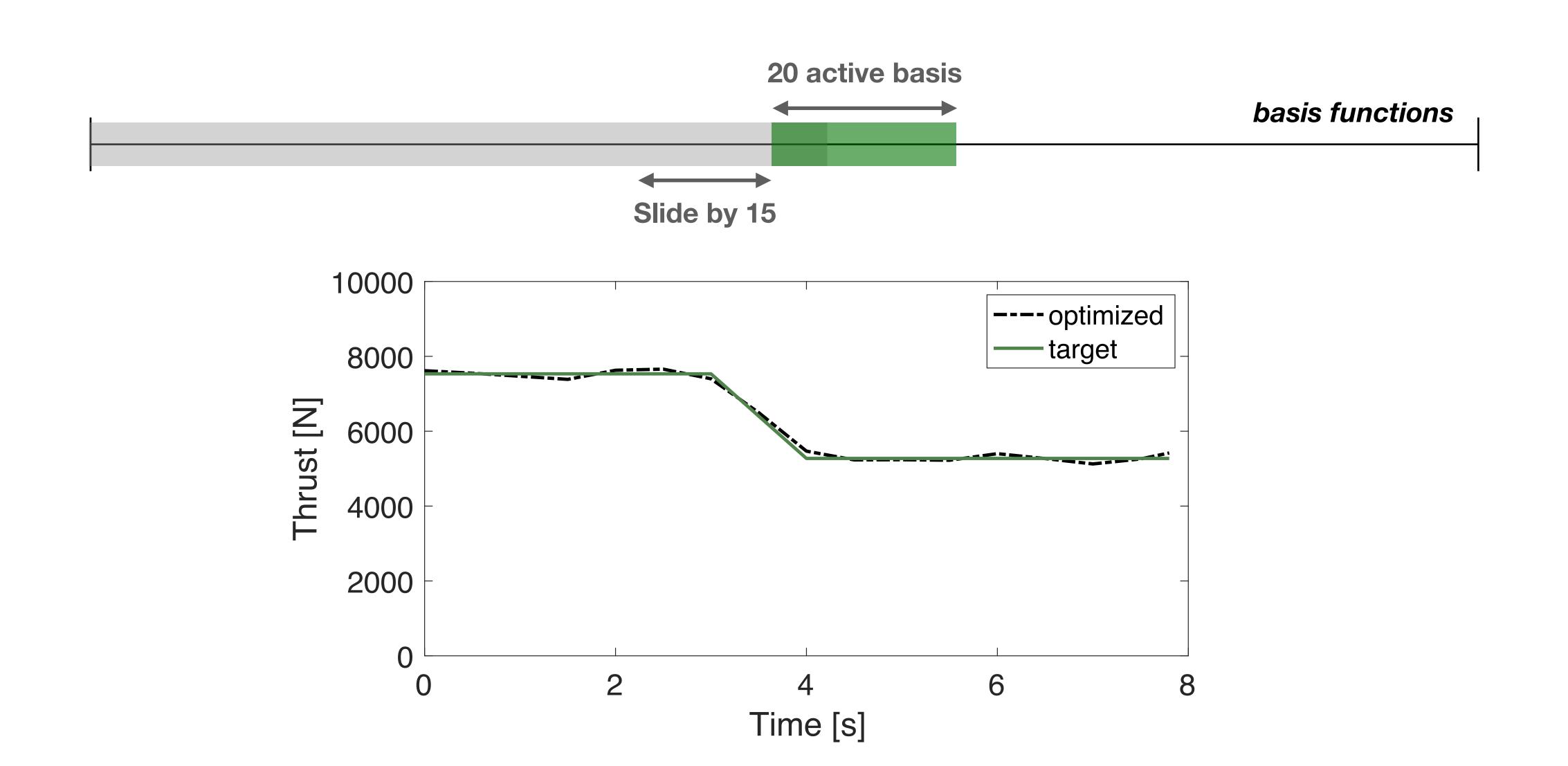


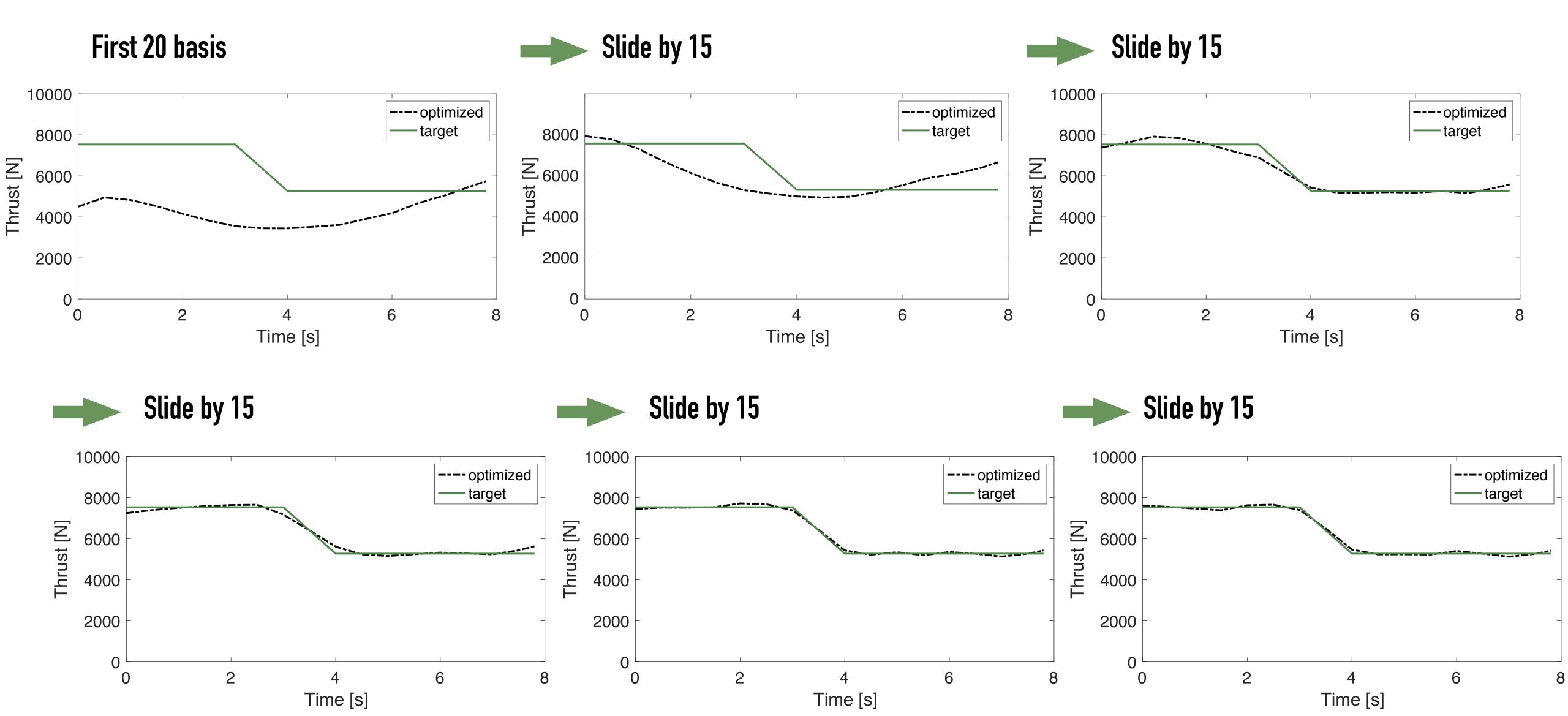




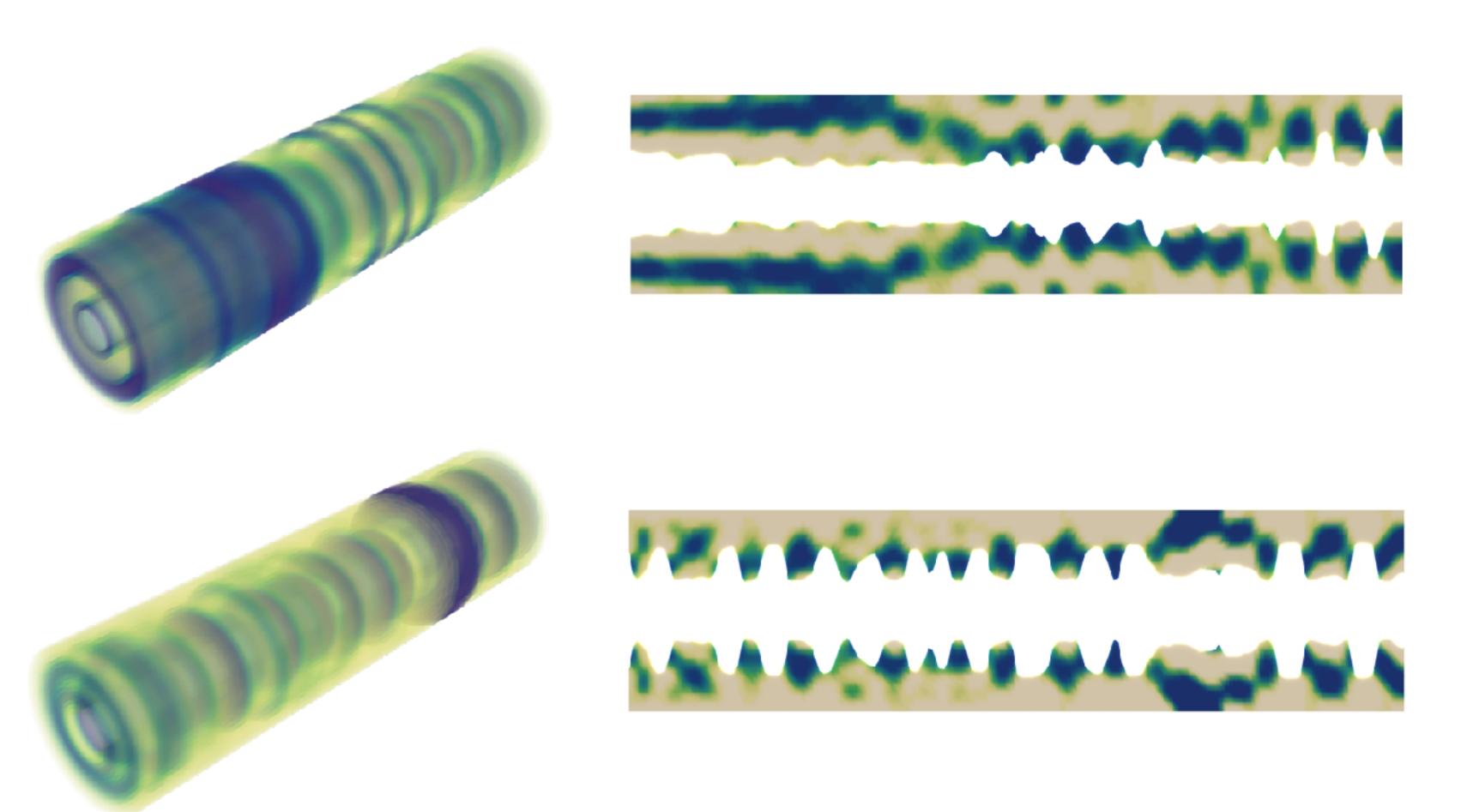


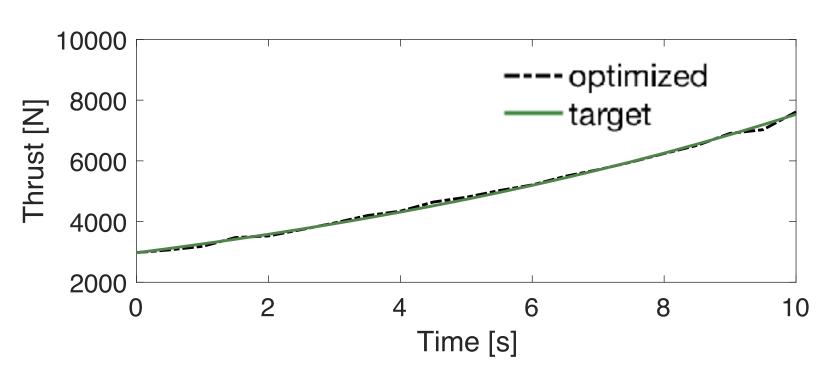


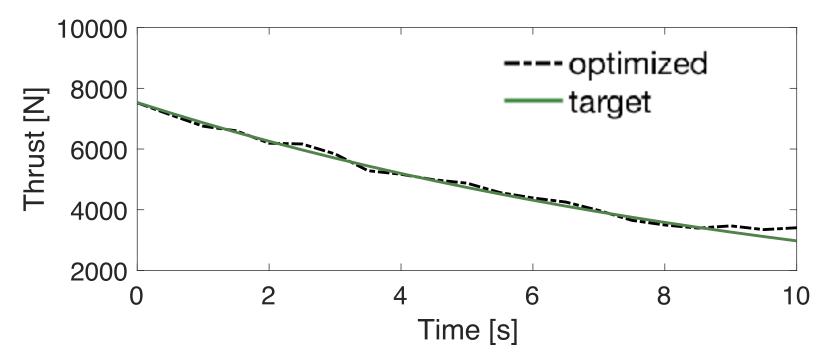




Optimized Solid Rocket Fuel Designs

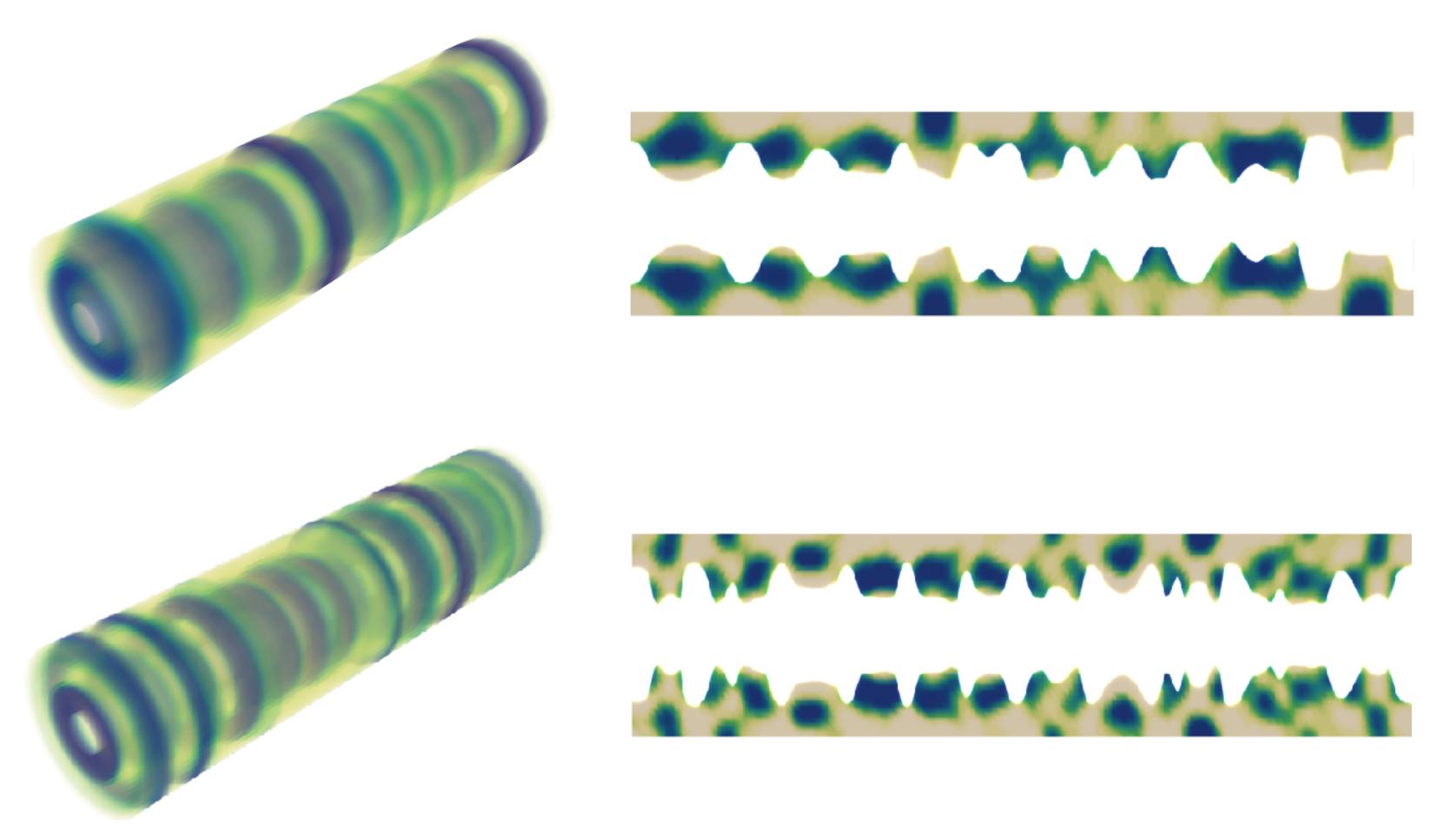


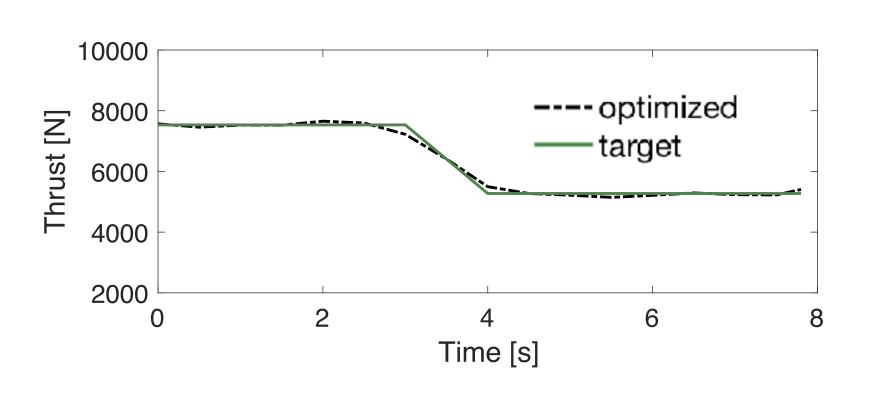


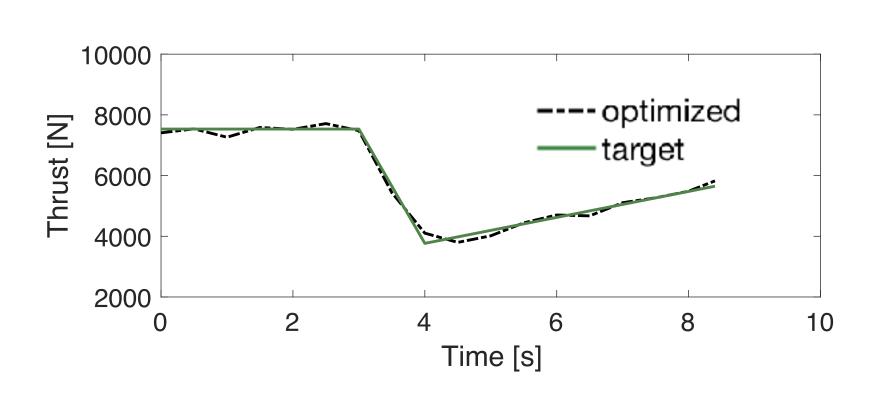


0.254x10⁻² burn rate [m/sec] 1.52x10⁻²

Optimized Solid Rocket Fuel Designs

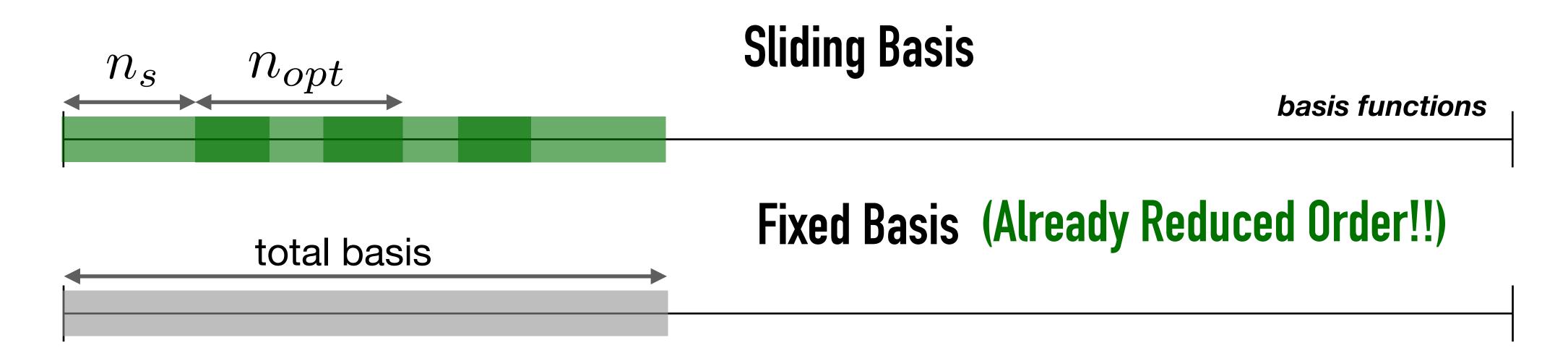






Graded material fields!

Performance



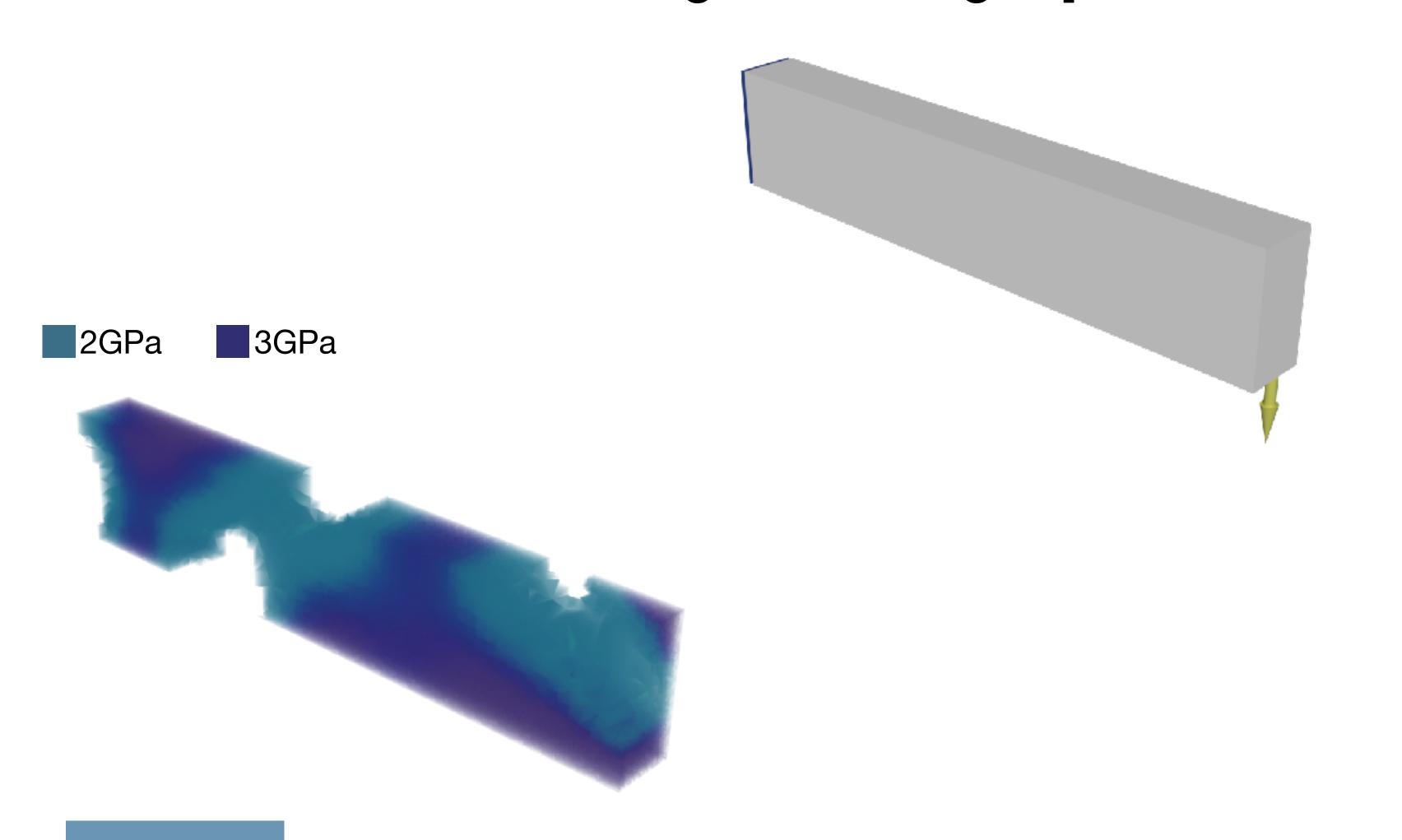
Fixed Basis

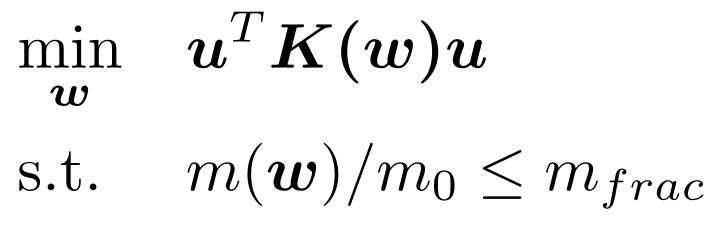
Sliding Basis

Thrust Profile	Time	Objective/Error	Time	Objective/Error
Constant Acceleration	1178s	349k/2.3%	288s	86k/1.1%
Constant Deceleration	4896s	867k/3.4%	621s	452k/2.7%
Two Step	191s	102k/1.1%	69s	217k/1.4%
Bucket	1006s	272k/1.8%	596s	272k/1.8%

Upto 8x speed up Comparable objective values

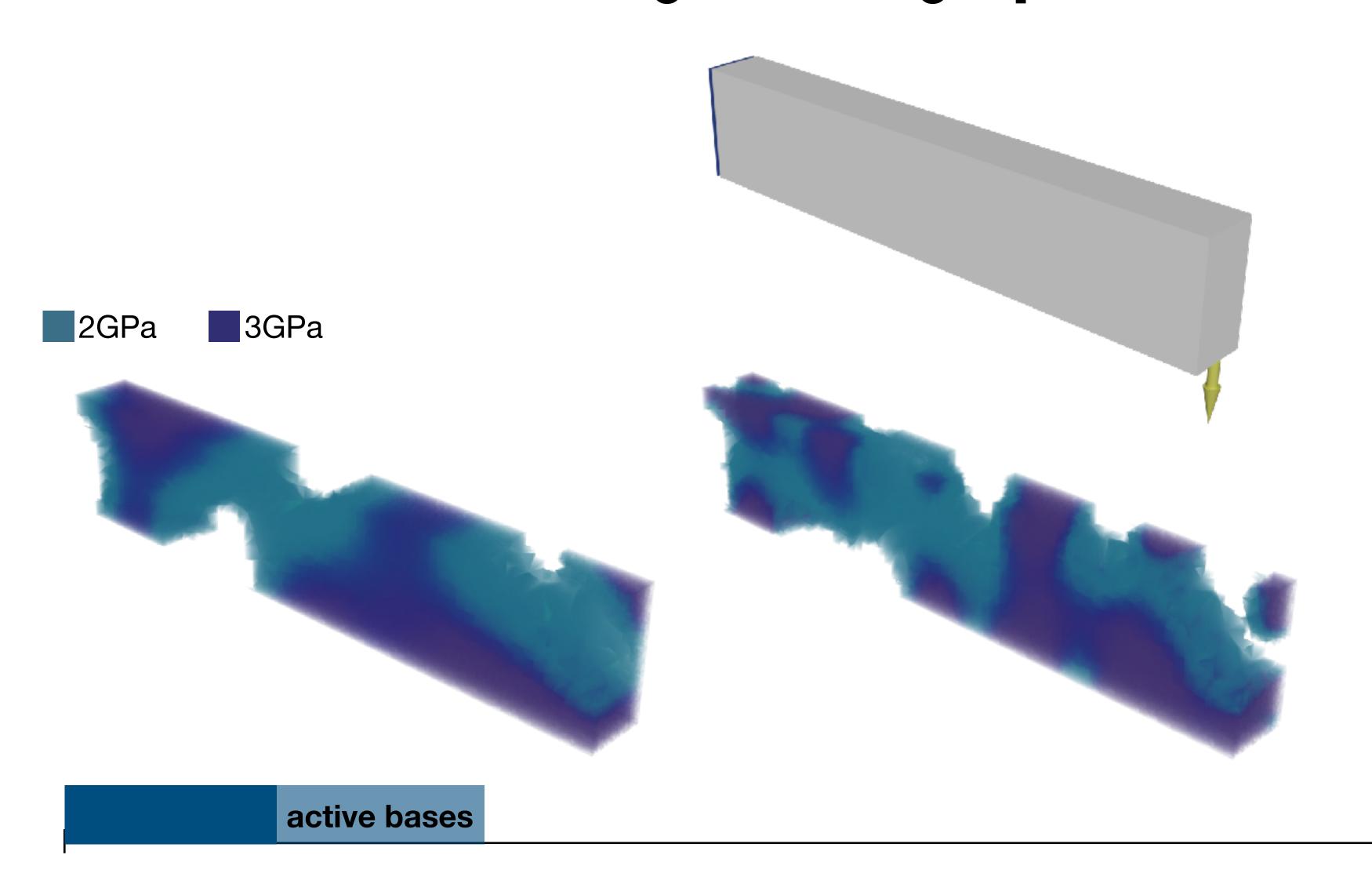
Multi-material Topology Optimization Through Sliding Optimization Steps



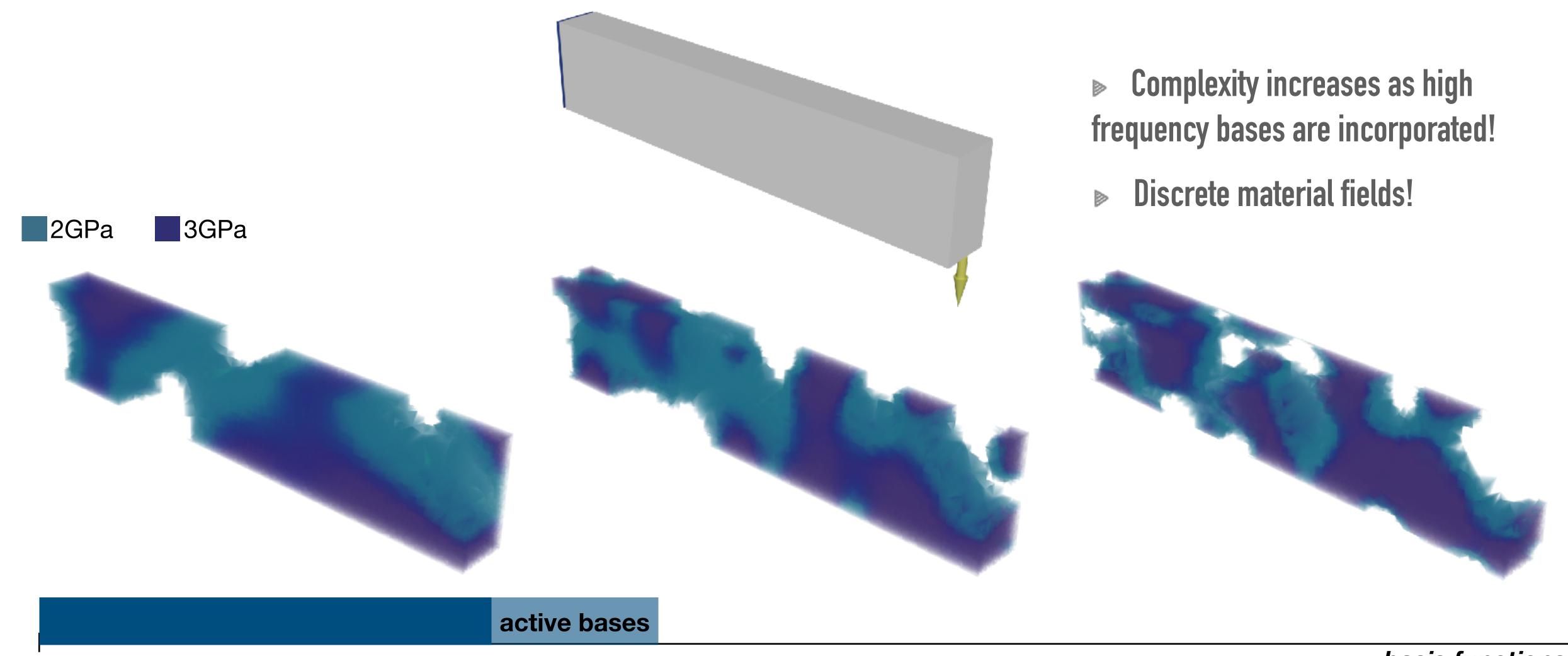


$$K(w)u=F$$

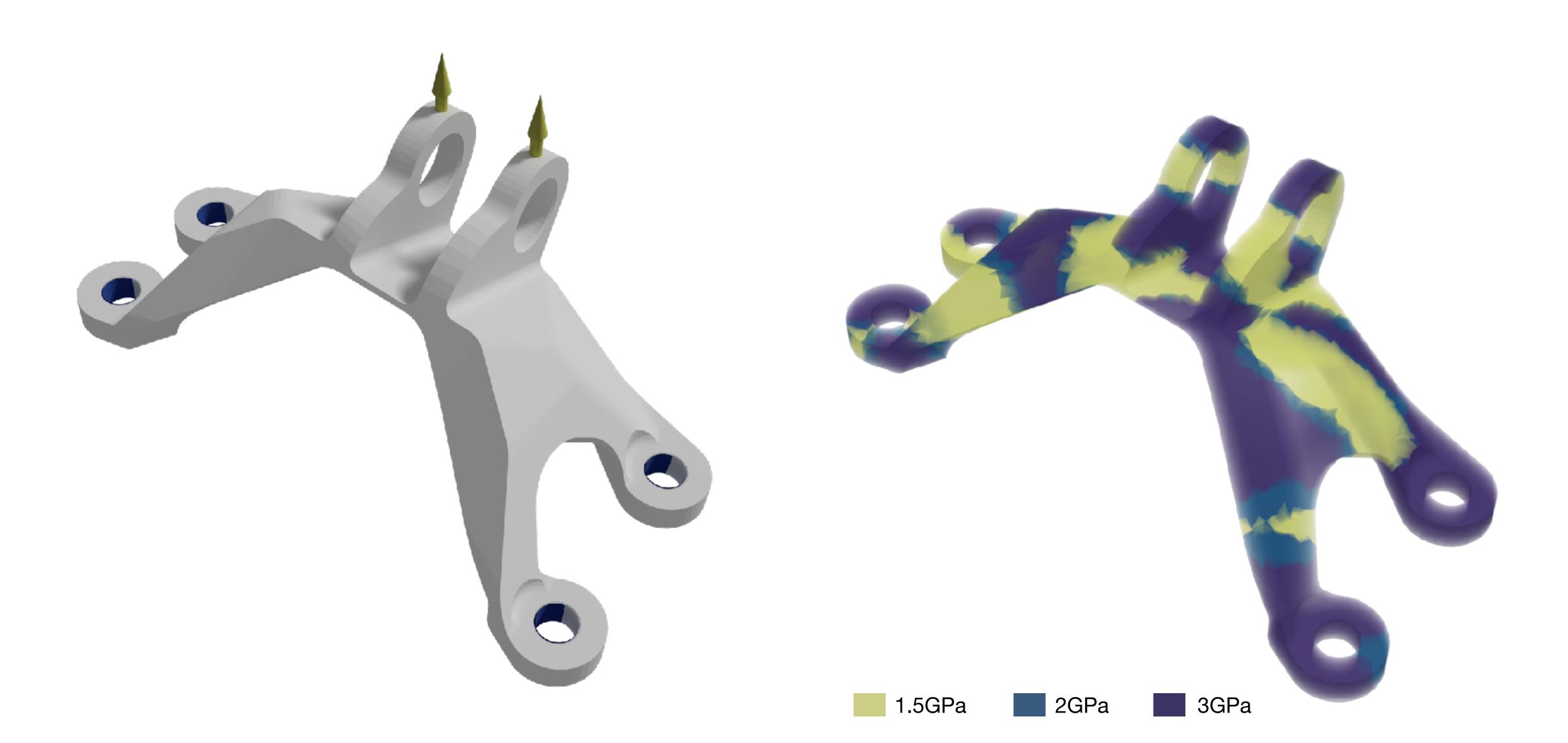
Multi-material Topology Optimization Through Sliding Optimization Steps



Multi-material Topology Optimization Through Sliding Optimization Steps



Material Distribution Optimization



Conventional VS Reduced Order

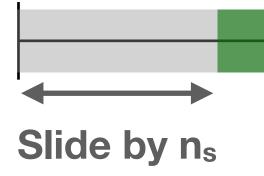
Optimize for each pixel

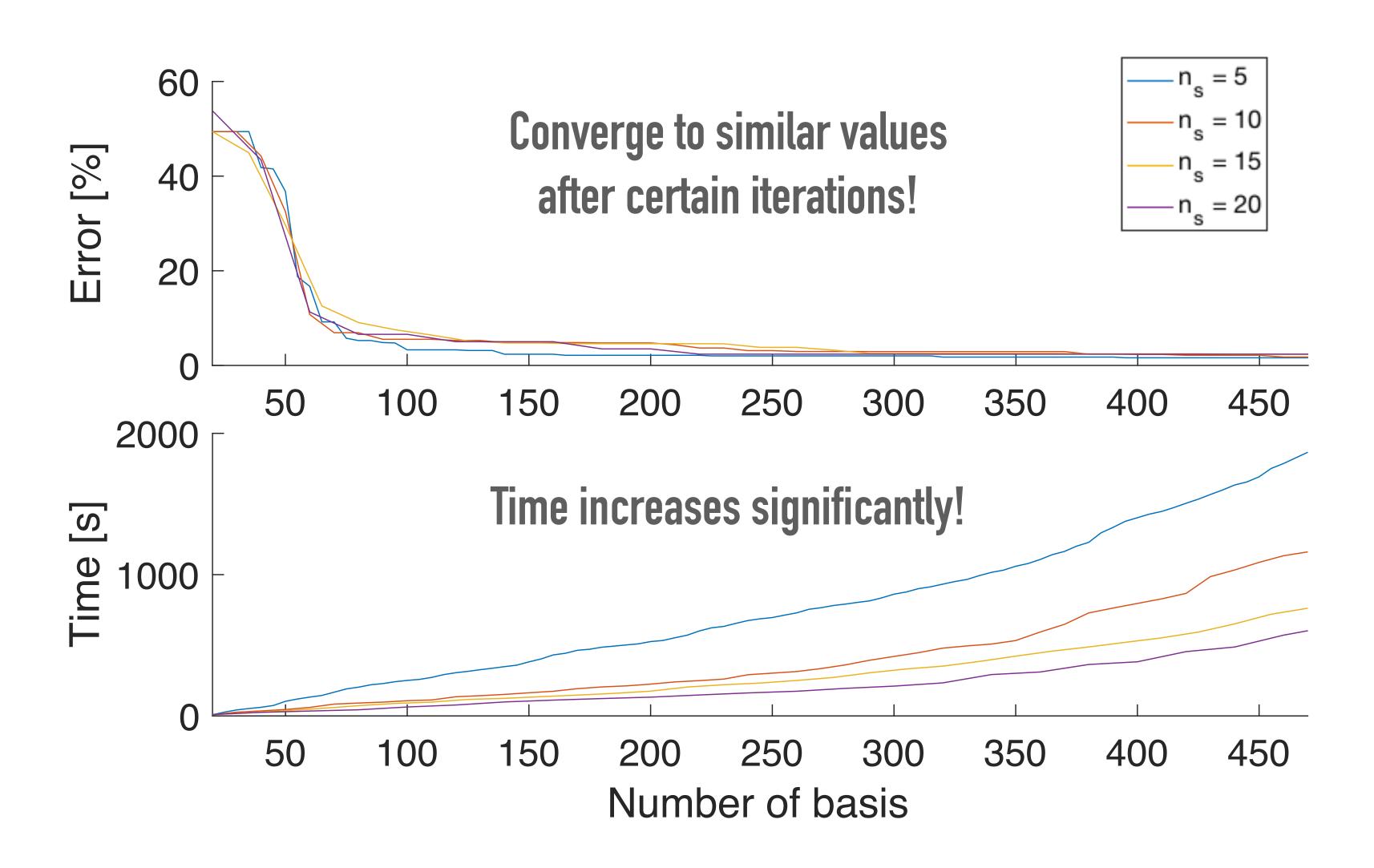
Objective: 252316 Time: 1945sec

Comparable Objective Values

Optimize for weights of the Laplacian basis (Ours)

Effect of sliding amount, n_s





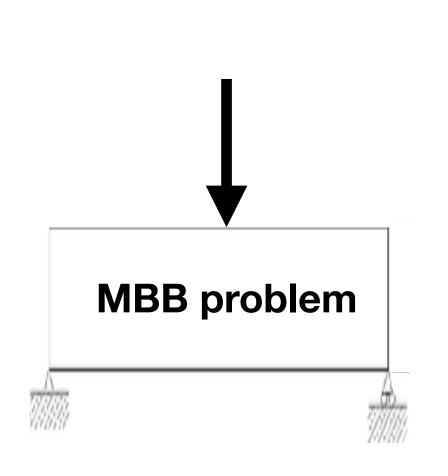
A Versatile Design Optimization Tool

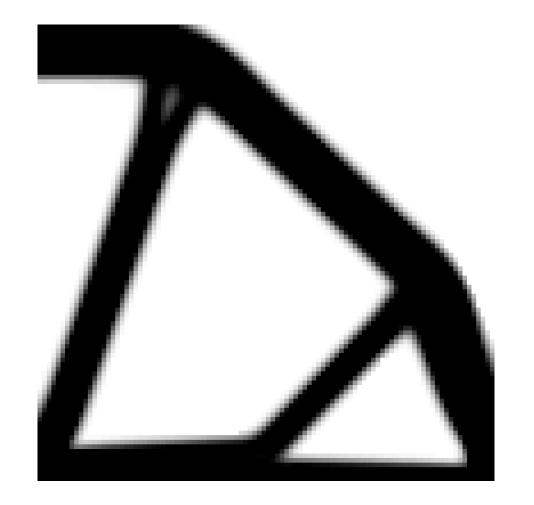
The main **contributions** of the presented work:

- An optimization technique we call sliding basis optimization to efficiently explore parameterized design space
- Practical material design method with prescribed bounds using Laplacian basis
- Enabling optimization of material distributions for new applications coupled with black-box analysis

Recent Developments

Sliding basis topology optimization - a modular system





Sliding Basis Topology Optimization Using **50 Bases**

Compliance objective: 302.2

Conventional Topology Optimization (TOP88)
Using 10k elements

Compliance objective: 287.8

Goal is not to match the geometry but achieve comparable performance faster!!

Thank you!

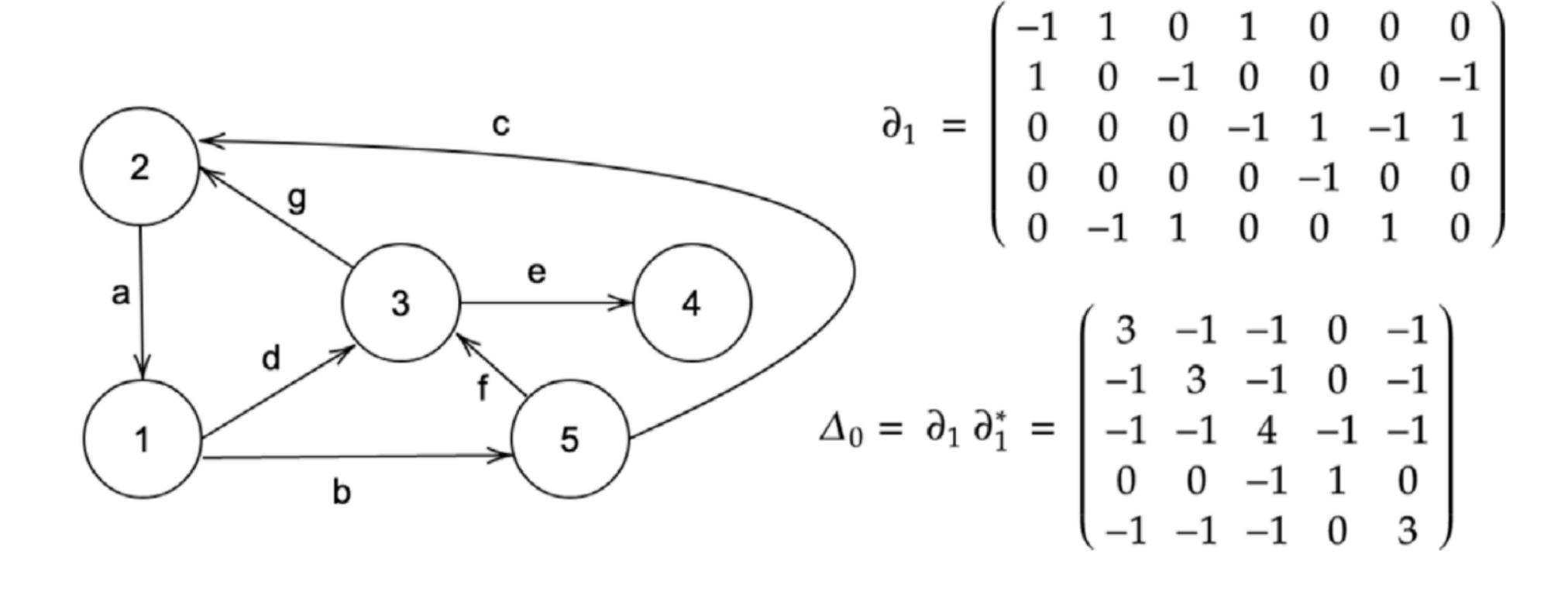
nulu@parc.com

Supplementary

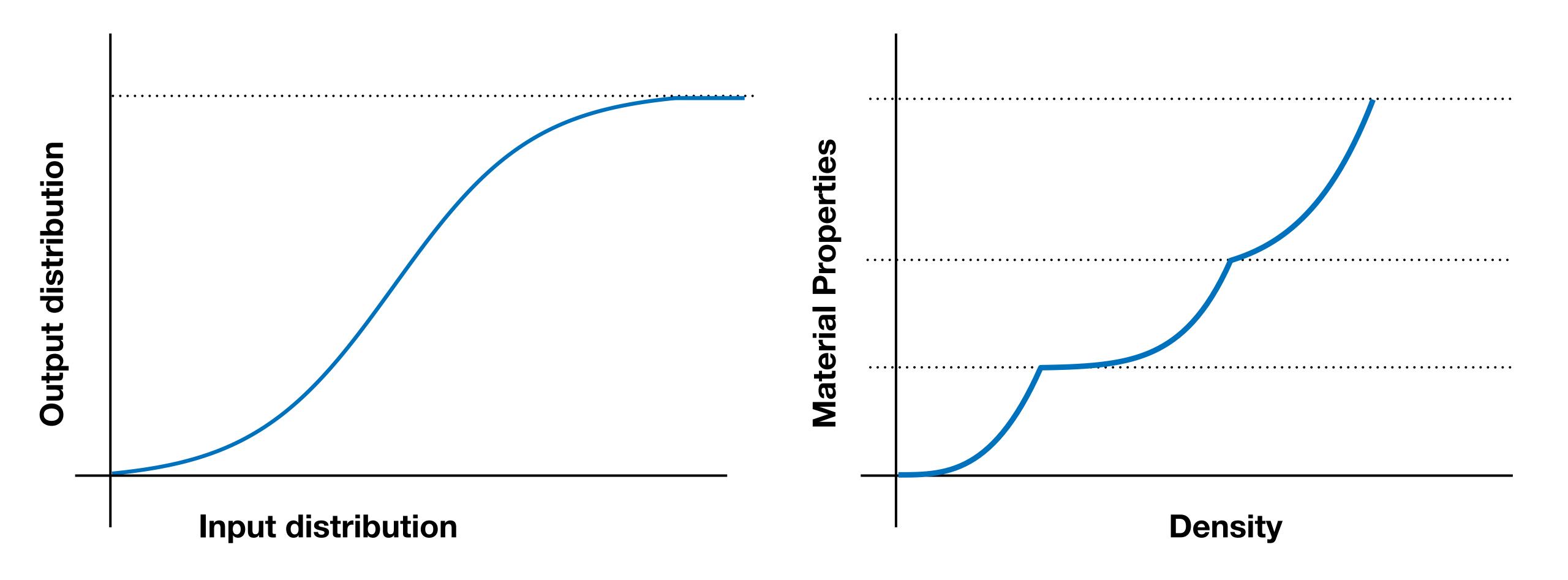
Acknowledgements

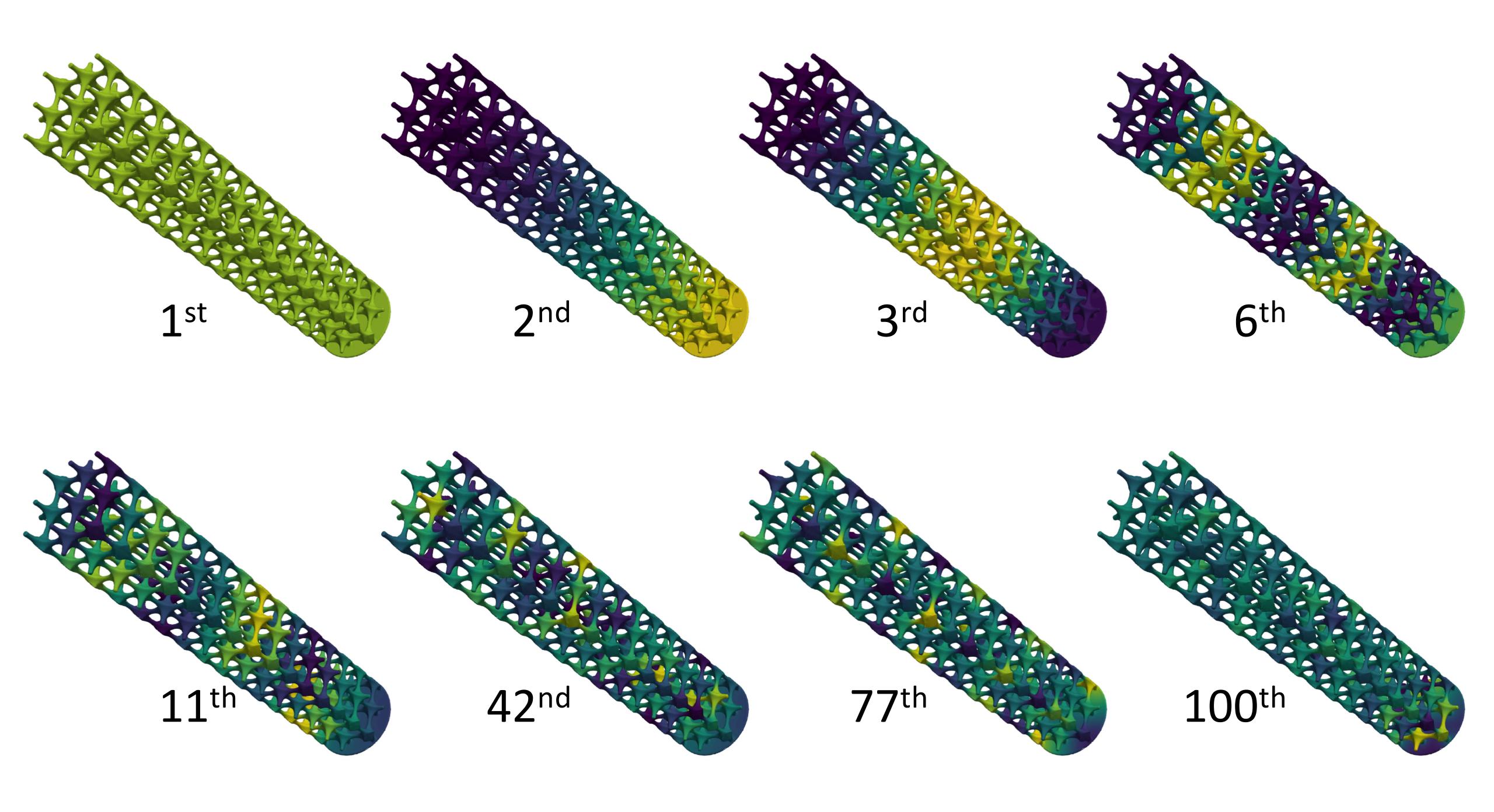
The authors would like to thank NASA Jacobs Space Exploration Group for providing the solid rocket fuel design problem with the target thrust profile. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or U.S. Government. 3D models: dragon by XYZ RGB Inc and GE bracket by WilsonWong on GrabCAD.

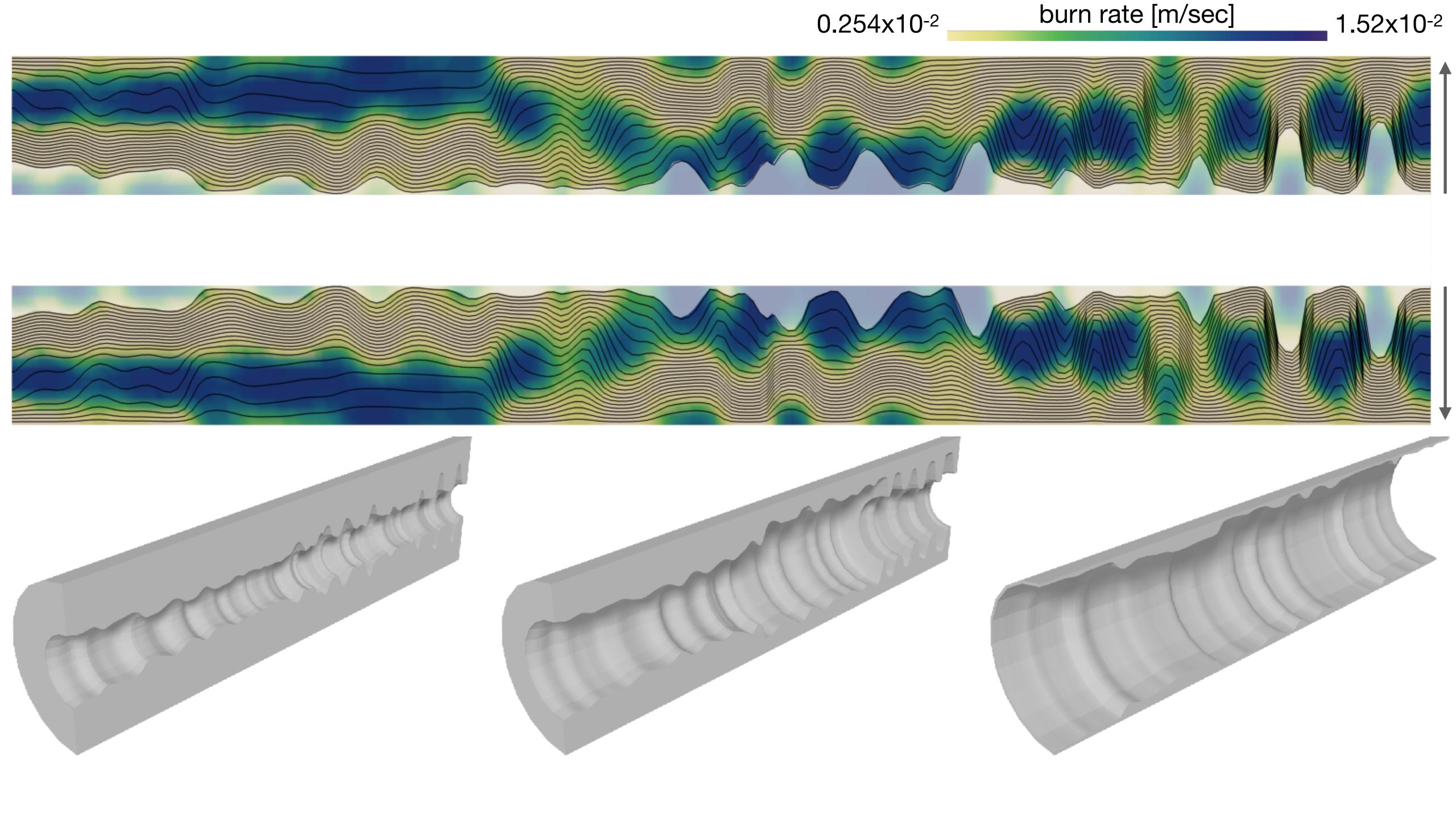
Graph Laplacian



Filters







					Fixed Basis		Sliding Basis	
Thrust Profile	n_{opt}	n_s	n_{slides}	Total Basis	Time	Objective/Error	Time	Objective/Error
Constant Acceleration	20	15	14	230	1178s	349k/2.3%	288s	86k/1.1%
Constant Deceleration	50	40	7	320	4896s	867k/3.4%	621s	452k/2.7%
Two Step	20	15	7	125	191s	102k/1.1%	69s	217k/1.4%
Bucket	20	15	24	380	1006s	272k/1.8%	596s	272k/1.8%

Why not automatic differentiation?

- Numerical differentiation is already implemented and default option in many optimization software.
- But our approach can also work with automatic differentiation.
- One disadvantage of automatic differentiation is that it cannot be used with truly black-box components.