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Abstract

In this paper, we propose PATO—a producibility-aware topology optimization (TO) framework to help efficiently explore
the design space of components fabricated using metal additive manufacturing (AM), while ensuring manufacturability
with respect to cracking. Specifically, parts fabricated through Laser Powder Bed Fusion (LPBF) are prone to defects
such as warpage or cracking due to high residual stress values generated from the steep thermal gradients produced
during the build process. Maturing the design for such parts and planning their fabrication can span months to years,
often involving multiple handoffs between design and manufacturing engineers. PATO is based on the a priori discovery
of crack-free designs, so that the optimized part can be built defect-free at the outset. To ensure that the design is crack
free during optimization, producibility is explicitly encoded within the standard formulation of TO, using a crack index.
Multiple crack indices are explored and using experimental validation, maximum shear strain index (MSSI) is shown
to be an accurate crack index. Simulating the build process, in order to estimate MSSI, is a coupled, multi-physics,
time-complex computation and incorporating it in the TO loop can be computationally prohibitive. We leverage the
current advances in deep convolutional neural networks (DCNN) and present a high-fidelity surrogate model based on
an Attention-based U-Net architecture to predict the MSSI values as a spatially varying field over the part’s domain.
Further, we employ automatic differentiation to directly compute the gradient of maximum MSSI with respect to the
input design variables and augment it with the performance-based sensitivity field to optimize the design while considering
the trade-off between weight, manufacturability, and functionality. We demonstrate the effectiveness of the proposed
method through benchmark studies in 3D as well as experimental validation.

Keywords: Design for Manufacturing, Residual Stress, Cracking Index, Automatic Differentiation, Surrogate Model,
Attention-based Neural-Net

1. Introduction

In this paper, we explore design synthesis of parts fab-
ricated by metal additive manufacturing (AM) while con-
sidering ‘producibility’ constraints. For the purposes of
this paper, producibility is defined by the ability to fabri-
cate the part such that there are no cracks produced due
to steep thermal gradients encountered during LPBF-AM.
Solving this problem is critical to design gas turbine com-
ponents, especially those that are equipped with channels
designed for hot gas flow, and fabricated using LPBF-AM
of Ni-based superalloys [1]. In LPBF-AM, a focused laser
beam is used to selectively melt powder in a layer-by-layer
fashion [2] to construct a geometry of interest. Each layer
can be a few tens of microns thick and after melting, each
layer is cooled in order to solidify it before sequentially
depositing the next layer on top. These rapid heating and
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cooling cycles can lead to steep thermal gradients in the
part that can result in generation of high residual stresses.
These residual stresses can manifest in part deformation or
if sufficiently high, result in cracking at multiple locations
of the part [3]. When a part cracks at one or more loca-
tions after manufacturing, it becomes necessary to refine
the part design and to repeat the manufacturing process
with the new design, leading to multiple iterations from
design to full scale manufacture of the part. Consequently,
the overall design maturation time for a part can span from
months to years, involving multiple hand-offs between de-
sign and manufacturing engineers. Additionally, as metal
AM evolves from manufacturing part prototypes to large
scale high volume industrial parts, throughput becomes
a critical factor for the adoption of AM technology. Ad-
dressing this inefficiency and cost, due to cracking after
manufacturing, requires an understanding and modeling
of the phenomena that lead to the initiation of cracks. We
demonstrate how an understanding of the cracking mech-
anism as it relates to the melting process in AM can be
used to formulate a crack index by leveraging high-fidelity
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Figure 1: Our producibility-aware topology optimization (PATO) framework enables an approach to incorporate producibility of additively
manufactured parts directly into the design process using a deep neural network predictor of producibility. For instance, given a heat
conduction problem (left), a typical TO approach generates ‘no-go’ designs with regions of high residual stress that crack after manufacturing
(top). On the other hand, PATO leverages an attention-based neural network surrogate model trained on a diverse set of optimized designs
to augment the performance sensitivity field with a producibility sensitivity field (here MSSI) obtained through automatic differentiation to
generate ‘go’ designs that will remain crack-free after post-processing (bottom).

multiphysics simulators of the melting process. We show
how an attention-based, 3D deep learning neural network
architecture [4] can be used to model the crack index accu-
rately and act as a reliable surrogate for the time-complex,
high-fidelity simulator. This enables instantaneous estima-
tion of the crack index, and permits an approach for the
crack index to be directly incorporated into algorithms
that optimize the design of components producible using
LPBF-AM.

Topology optimization (TO) is a powerful automated
design paradigm that identifies optimized realizations of
a conceptual design problem defined in terms of loading
conditions, and performance and manufacturing objectives
and constraints. It enables efficient exploration of large de-
sign spaces, and can harness the true potential and innova-
tion of AM. On the other hand, the geometric complexity
of designs generated by TO can cause defects in the manu-
factured part, which can result in costly trial-and-error cy-
cles. Generating producible (as defined earlier) optimized
designs requires explicitly encoding producibility within
TO and computing the gradients. We employ automatic
differentiation to compute the gradients, a.k.a. the sensi-
tivity field, of the producibility criterion and augment it
with the performance sensitivity fields. Subsequently, the
augmented sensitivity field is used to optimized the design
with respect to both performance and producibility. We
demonstrate that closing the loop from manufacturing to
design in this manner allows for TO to successfully stay
away from crack-prone designs as illustrated in Fig. 1.

1.1. Contributions & Outline

The key contributions of this paper are:

• A producibility-aware topology optimization (PATO)
approach to constrain the solution of multi-physics
TO and guide it away from non-producible designs;

• The application of automatic differentiation to gener-
ate sensitivity fields that can be integrated into the
standard TO formulation to effectively bias the opti-
mization away from crack-prone design candidates.

• The formulation of a specific producibility criterion;
namely, propensity to cracks in additively manufac-
tured parts (via LPBF-AM) in terms of a maximum
shear strain index (MSSI), whose correlation with
cracking is established by experimental testing.

• The volumetric regression of the producibility crite-
ria as a function of part geometry via an attention-
based, 3D convolutional neural network (CNN) sur-
rogate model, including training and validation.

• An intelligent workflow for the selection of the max-
imally diverse set of design candidates, from those
generated by the design generator for training the sur-
rogate; and

To demonstrate the effectiveness of our PATO frame-
work, we choose a problem featuring the design of an air
cooling channel on a test coupon, representative of the
channels encountered in turbomachinery parts. We show
that PATO is able to successfully converge towards the
discovery of crack-free designs, while a TO algorithm un-
constrained by producibility applied to the same problem
is unable to accomplish the same outcome.

We identify MSSI as an appropriate crack-index based
on an understanding the physics related to the crack ini-
tiation process, and use a calibrated inherent strain-based
high-fidelity modeling tool of the nonlinear and transient
additive melting process to evaluate for train/test data
generation for the surrogate model. Noting that the MSSI
can be predicted as a function of the part geometry, we use
a design generator to construct training data candidates
using TO under varying multi-physics constraints. Most
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of the related traditional efforts only focus on constraints
specific to structural integrity, which can render many can-
didates infeasible in the context of turbomachinery parts
due to the criticality of the constraints imposed by other
physics-based (e.g., thermal, flow, and pressure) effects.
Our design generator further incorporates constraints that
ensure that the generated geometries are free from self-
support issues during additive fabrication, thereby ensur-
ing that they can be feasibly printed by the additive pro-
cess. The selection workflow shortlists the training data
to a maximally diverse set of candidates, ensuring a good
trade-off between the computational complexity of evalu-
ating the training data with the generalization capability
of the surrogate model in the design space.

To efficiently predict cracking for each candidate design
generated within the TO loop, we train an attention-based
CNN surrogate model [5]. We show how neural attention
mechanisms help overcome the challenge of detecting ex-
tremely sparse regions of crack propensity reliably, accu-
rately, and time-efficiently. In addition to computational
efficiency, the CNN architecture facilitates deriving 3D
sensitivity fields via automatic differentiation, regardless
of the inherent complexity of the original physics-based
model used for training data generation.

2. Literature Review

In this section, we will briefly review recent advances in
TO for manufacturing, failure criteria to predict cracking
due to residual stresses, and deep learning for AM.

2.1. Topology Optimization for Manufacturing

TO [6, 7] is often used at the preliminary stages of de-
sign to provide insight on viable geometric features and
material distribution [8] of a product. An unaddressed
challenge in the widespread adoption of TO in the fi-
nal stages of the design cycle is non-manufacturability of
the organic and geometrically complex TO shapes. To
bridge the gap between design and manufacturing, various
manufacturing constraints have been incorporated within
TO formulation [9–12]. Considering some of the tradi-
tional manufacturing technologies, a few methods have
been proposed that extend the TO formulation to ensure
manufacturability by casting [13–16], laser-cut [7, 11], or
milling [16–21]. On the other hand, AM enables engi-
neers to fabricate highly detailed and complex parts and
offers a great synergy with TO. However, different AM
processes require distinct design guidelines to be followed
for a successful and cost-effective build. Therefore, design
for AM (DfAM) and specifically TO for AM is a topic of
great interest, where strategies have been proposed for TO
with respect to feature size [22], sacrificial support struc-
tures [23–25], material uncertainty [26, 27], and process-
induced anisotropy [28]. In this paper, we focus on TO for
LPBF-AM, where a laser beam melts and sinters metal
powder in a layer-by-layer fashion to fabricate the part.

Such additive processes are well-recognized as one of the
most important AM technologies [1] in that they feature
minimal part surface roughness, high dimensional accu-
racy as well as great geometric freedom and versatility.

On the other hand, the complicated physical processes
involved in LPBF-AM pose a major challenge in the efforts
to combine the LPBF-enabled fabrication freedom with
the TO-informed design optimality.

In fact, the highly localized and transient input of
tremendous energy throughout a LPBF-AM process sub-
jects every region of the part to multiple phase changes
in rapid heating and cooling cycles. This results in high
thermal gradient and subsequently residual stresses that
can give rise to detrimental cracking of the part. In ad-
dition, part geometry has been identified as an important
factor correlated to the tendency of cracking in a LPBF
process [29, 30]. This indicates the necessity to incorpo-
rate a constraint for crack-free AM fabrication into TO
so that the AM manufacturability of the resulting opti-
mal design can be ensured. The producibility constraint
can potentially be implemented through assessing crack-
ing risk of the designs by means of high-fidelity printing
process simulation. However, this approach requires cou-
pled multi-physics, time-dependent, and nonlinear anal-
ysis at high-resolution; using it in an optimization loop
is currently computationally prohibitive. Further, deriv-
ing analytical expressions for the gradients is extremely
challenging. Recently, a number of paradigms have been
developed to address this issue through acceleration of the
TO engine [31]; another approach directly executes TO by
leveraging an machine learning (ML) framework [32–35].
We leverage recent advances in ML to efficiently predict
cracking within the TO using a surrogate model as well as
computing gradients using automatic differentiation.

2.2. Metrics for predicting cracks

Metal alloys typically fail due to nucleation, growth and
coalescence of microscopic defects/voids. Based on ex-
perimental observations, analytical studies and numerical
modeling, several failure parameters have been proposed
in the literature. Gurson [36, 37] published seminal work
in developing a model to predict failure of ductile ma-
terials. The model involved more than ten parameters
that needed to be calibrated independently. Needleman
and Tvergaard [38, 39] completed the model and proposed
methods to calibrate the parameters. With the advent of
finite-element modeling, it became easier to estimate com-
plex parameters such as stress triaxiality that characterizes
relative degree of hydrostatic stress in a given stress state.
Therefore, researchers [40–42] started considering various
stages of crack growth such as void nucleation, growth, co-
alescence independently and described each phenomenon
as a function of equivalent plastic strain, stress triaxiality,
normalized maximal shear stress respectively.

In this work, we explored applicability of three parame-
ters, which are described by Bao et. al. [43] - strain failure
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index (SFI), maximum shear strain index (MSSI) and to-
tal strain energy density index (TSI), as criteria to predict
crack likelihood.

Through experimental coupon-builds and calibration,
we concluded that the MSSI serves as a good index to cap-
ture likelihood of crack with suitable precision and speci-
ficity.

2.3. Deep Learning for prediction of dense 3D fields

The application of 3D segmentation techniques using
convolutional neural networks (CNNs), while prevalent in
medical imaging domain [44–49], is fairly new in the do-
main of additive manufacturing. Many of the workflows
implement a 2D based inference followed by postprocess-
ing to stitch the outcomes volumetrically. Qi et. al. [50]
provided a broad survey into the application of deep learn-
ing to AM. The work described in [51] is analogous to
ours, where a 3D U-Net is applied for segmentation of 3D
printed volumes to facilitate automated identification of
defects in the part. Unlike our paper, this work targets
the standard segmentation task, formulated as classifica-
tion and does not need to target the voxel-level spatial
resolution for regression that is critical for the problem
targeted in our paper. Some other related efforts in the
space of AM include [48, 51, 52] that make use of 2D
inference of defects during AM, by analysis of 2D cam-
era images during part printing. Khadilkar et. al. [53]
considered stress prediction for AM parts; while it em-
ployed high-fidelity physics-based simulation, and a deep
learning based model as a surrogate, to estimate stress for
varying geometries, it largely focused on modeling 2D sep-
aration stress at the interface that occurs in bottom-up
stereolithography printing. Liang et. al. [54] used finite
element model and deep learning to estimate surface Von
Mises stress distribution on aorta walls; however, it also
abstracts the estimation problem into a 2D modeling prob-
lem by unrolling the aorta wall into a 2D surface, by apply-
ing a shape abstraction model. Nie et. al. [55] presented
the application of deep neural networks for predicting the
2D stress fields on cantilevered structures. To the best of
our knowledge, our work described in [4] is the first body
of work to look at the application of attention-based 3D
architectures for a full end to end volumetric regression
of 3D stress fields in AM. This paper will extend the out-
comes of [4] for the accurate estimation of crack index from
3D geometry of a design candidate.

3. Design Problem

The design problem targeted in this paper is the same
as the one described in [4]. It deals with the design of
a channel, which can be seen either as a cooling channel
for hot gas flow or a mechanism to help reduce weight in
turbomachinery parts. To emulate this design problem, a
coupon as shown in Fig. 2 was used to help formulate the
design space.

Figure 2: No-Go coupon design domain.

In addition to the cooling channel, the coupon includes
a triangular notch at the bottom to emulate presence of
another geometric artifact in the vicinity of the channel,
that might exist in the actual part. In our experiment, the
primary parameter is the shape and volume of the channel.
Additional design and manufacturing constraints include:

• Minimum feature size of 0.5 mm
• Symmetry in X direction
• Extrusion in Y direction to ensure 1) air flow and 2)

removal of excess powder
• Self-supporting in Z direction with 45◦ overhang angle

Our experiments show that many variants of this config-
uration consistently lead to cracks after fabrication. The
goal is to understand the relationship between the channel
shape, volume, and the crack index distribution, so that
designs that lead to high crack index values can be avoided
at the outset during the design phase. While approaches
like transfer learning [56] can facilitate extending the sur-
rogate model generated for a given feature to other design
problems that are only incrementally different, or to vary-
ing feature-sizes, for a drastically different design feature
or geometry, a new surrogate might need to be created
emulating the workflow presented in this paper. In that
sense, the vision is for there to be a library of surrogates
each of which would apply to a distinctly different feature
and help optimize it for crack-free manufacturing, within
a class of design problems.

4. Proposed Method

In this section, we will describe the proposed method
by explaining the process modeling and inherent strain
calibration (Section 4.1), failure prediction through var-
ious cracking indices (Section 4.2), training data gener-
ation using TO with different objectives and constraints
(Section 4.3), selection of maximally diverse design sam-
ples (Section 4.4), evaluation of the training data numer-
ically (Section 4.5), attention-based deep learning surro-
gate model in 3D for cracking index (Sections 4.6 and 4.7),
and the PATO formulation and sensitivity analysis by
leveraging automatic differentiation (Section 4.8).
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4.1. Additive Manufacturing - Process Modeling

The baseline coupon is designed through prior knowl-
edge and several experimental trials wherein the coupon
cracks repeatedly at the base of the notch, as shown in
Fig. 3. Such a coupon mimics a crack observed in typical
3D printed hot gas path component in jet engines. Ad-
dressing the cracking problem requires understanding and
accurate modeling of the phenomena that results in the
initiation of the cracks. Since cracks are a mechanism to
relieve stresses, residual stresses at the end of build process
is studied in this work.

Figure 3: Multiple trials of the baseline coupons that crack repeat-
edly at the base of the notch (black ellipses show cracks).

Several commercially available high-fidelity and physics-
based software tools can simulate the nonlinear, transient,
and multiphysics additive build process. Although such
multiphysics simulations are attractive to study the pro-
cess and capture the physics accurately, they tend to be
resource intensive and take a long time to solve. For ex-
ample, the process simulation of a 7-inch tall part can take
more than a week on a 24 core high performance proces-
sor with 256 GB of memory. Multiple approaches attempt
to address defect control as a process control problem,
wherein undesirable change to one or more of the process
parameters is inferred using a mix of physics-based and
sensor-based models, to then adjust the process parame-
ters to towards the desirable regime of values [57–60]. The
goal of this study is to modify the design without modi-
fying the process parameters because the feasible process
window to successfully print parts using Ni superalloys
is narrow. Therefore, the inherent strain methodology is
used to simulate the build process. Such a technique is sev-
eral orders of magnitude faster in-terms of compute time
than the multiphysics simulation. However, the inherent
strains need to be predetermined.

There are several methods to calibrate the inherent
strains in order to predict the stresses accurately. In
this study inherent strain calibration based on experi-
ments is pursued. Three cantilever coupons are printed
and released using electric discharge machining (EDM)
process. The resulting out-of-plane displacement (paral-
lel to build direction) is measured at several locations (see
Fig. 4). The calibration process involves simulating the
build process and varying the inherent strains until the
predicted distortion matches the measured distortion at
various locations. The calibrated inherent strain values

were found to be εxx = εyy = −0.010295 and εzz = −0.03.
If the process parameters or material are changed, then
the calibration process will need to be repeated. Apart
from computational efficiency, another advantage of the
inherent strain based methodology over the coupled tran-
sient thermal-structural model is that the characterization
of temperature-dependent material properties is not re-
quired. Only the room temperature mechanical proper-
ties such as modulus, Poisson’s ratio and flow stress ver-
sus plastic strain is sufficient to fully define the material.
The inherent strain based process modeling approach pre-

Figure 4: Inherent strain calibration using cantilever coupons.

dicts residual stress gradients fairly accurately which are
the primary drivers of the crack. Therefore, the predicted
residual stresses can be used to synthesize an appropriate
3D crack index that captures the likelihood of crack across
the entire part.

4.2. Crack Index

The specimen may crack during the build, end of build,
or during post-processing. Since cracks are a mechanism
to relieve stresses, the residual stresses at the end of build
process is studied in this work. To predict failure of the
coupon during or at the end of the build process requires
a reliable failure parameter that can repeatably predict
the failure location. Parameters like maximum principal
stress and equivalent stress estimated at the end of build
process, which are typically used in structural analysis to
detect failure, were initially explored in the hope that they
would accurately correlate with crack risk (propensity) and
identify the location of crack. However, it was found, as
shown in Fig. 5, that neither of those two parameters indi-
cate the location of crack seen during builds with precision.

Figure 5: Exploring 3D Maximum Principal Stress and Equivalent
Stress as potential crack indices.
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As seen in the Fig. 5, both parameters seem to indi-
cate that a crack could initiate from almost any location
in the coupon, whereas it is known experimentally that
the crack always initiates from the bottom of the cooling
channel feature. This required a more detailed exploration
of parameters for crack index. As mentioned earlier, in
this work, we explored three failure parameters described
in [43]: SFI, MSSI, and TSI that are estimated as follows:

SFI =
τ · ε̄
εUTS

MSSI =
τ · (ε1 − ε3)

εUTS

TSI =
τ · (σi · εi)

(σUTS · εUTS)

where σi are the principal stresses, εi are the principal
strains, ε̄ is the effective plastic strain, εUTS is the strain
at the ultimate tensile strength, and τ is the triaxiality
factor given as,

τ =
σmean

σvonMises

Figure 6 shows the results of estimating each of the three
criteria from the output of an inherent strain based addi-
tive process simulation applied to a coupon that is known
to crack at the bottom of the cooling channel (i.e., the
“No-Go” coupon). After adjusting the thresholds, it can
be seen that the second criterion, i.e., the MSSI criterion
indicates a high value for the observed crack location with
good precision. As a result, MSSI was chosen as the crack
index for the outcomes described in this paper.

4.3. Training Data Generation

Since the surrogate model will be used within the TO
loop, it is essential that sufficient training data is pro-
vided by TO under different physics and boundary condi-
tions, while considering relevant design and manufactur-
ing constraints mentioned in Section 3. Figures 7(a) and
(b) illustrate the thermal conduction problem and a small
sample of symmetric self-supporting designs of the chan-
nel to maximize thermal conductivity at different volume
fractions. Figure 7c shows the hydrostatic pressure prob-
lem, where the initial design domain is slightly modified
to include a self-supporting through-cut channel. The op-
timized designs for the hydrostatic pressure problem are
shown in Fig. 7(d), where the structural compliance is min-
imized. Figures 7(e) and (f) illustrate an asymmetrical
thermal problem and the corresponding optimized designs
at different volume fractions, respectively. In addition to
the constant thermal and pressure loading, a set of 3D
TO problems has been considered featuring varying dis-
tribution of surface loading on the surface of the channels.
To be specific, the channel surface of a baseline/initial de-
sign is divided into 4 segments (see Fig. 7(g)) by the ver-
tical and horizontal symmetrical planes of the channel’s
cross-section shape. The objective of the TO problems

is structural compliance minimization. In order to intro-
duce sufficient diversities into the training data set, the
surface loading applied on each of these segments can vary
independently. In addition, two levels of volume fraction
constraints are considered to further diversify the gener-
ated geometries. The additive manufacturability filter de-
veloped by Langelaar [61] has been applied to ensure the
generated geometries are free from self-support issues in
additive fabrication. This maintains the relevancy of the
training data for the surrogate model. 540 geometries were
generated through this approach. A small set of the gen-
erated samples are shown in Fig. 7(h).

4.4. Training Data Selection

The accuracy and generalizability of the surrogate
model will benefit from training the surrogate on a larger,
as well as a more diverse, set of channel design samples.
This requirement is additionally critical due to the time-
complexity of evaluating a single sample using the high-
fidelity simulator. Since the relationship of the parame-
ters that were varied for training data generation (for e.g.,
loading, boundary conditions etc.) to the geometry of the
design is complex, a purely parametric approach might
still likely produce design geometries that are only incre-
mentally different. To address this issue, an additional
sample selection module was developed, that helps down-
select from a larger set of samples, generated freely by the
design generator, to a subset that are most diverse with
respect to geometric features. This larger, and more di-
verse set was used to train the next surrogate. Figure 8
shows a workflow that was designed to select a maximally
diverse set of design samples, where the input is a set of 3D
samples generated by the design generator. Given that the
designs are largely symmetric along the y-axis, we make
use of the central xz-slice of the 3D volume to represent a
sample, so that design similarity (or diversity) measured
across a pair of 2D slices can be expected to apply without
loss of generality to the corresponding pair of 3D samples
as well. These input samples are non-binary based on the
interpolation step performed to upsample the low resolu-
tion simulation runs to high resolution. Although the new
set of samples (540 in number) are fairly diverse, they also
include samples that are only incrementally different from
each other. The objective is to weed out any such samples
that are already represented by some other sample in the
set, thereby creating a maximally diverse subset of sam-
ples necessary for training a surrogate that is robust and
generalizable in the design domain. In some sense, the
size of this subset can be thought of as the true rank of
the generated design space.

The grayscale geometry samples are initially subjected
to a binarization step using either an edge detection al-
gorithm like Canny edge detector [62] or by using an ap-
propriate threshold. Now that all the 540, 2D slices are
binarized, the goal is to create a pairwise affinity or similar-
ity matrix where matrix-entry (i, j) measures the similar-
ity between samples ‘i’ and ‘j.’ Multiple distance metrics

6



Figure 6: Exploring 3 additional crack indices. MSSI best captures the region of crack with high precision.

like Euclidean or Hausdorff can be used, but we make use
of the Dice Coefficient [63, 64] to identify the extent of
overlap between pairs of design samples. The Dice coeffi-
cient is ideal because the standard viewpoint for all design
samples is known and there is thus no need to consider
complexity related to rotational variance when comparing
2 samples. Another advantage of using the Dice coeffi-
cient is that its range is naturally limited between 0 and
1, thus automatically normalizing the affinity matrix for
all the design samples. The affinity matrix for the 540
samples is now processed to identify clusters of samples
within the set, that share affinity values that are close to
each other. An approach ideally suited for this is the Affin-
ity Propagation algorithm [65]. Given an affinity matrix,
this algorithm uses message-passing between the samples
to converge to a state that allows the inference of the num-
ber of affinity clusters and the choice of the specific samples
(called the exemplars) that are considered to be represen-
tatives for a given affinity cluster. Unlike other clustering
algorithms like k-means, Affinity Propagation does not re-
quire the user to specify the number of clusters; rather it
is assumed that the affinity matrix implies the existence of
these clusters and we arrive at those when the algorithm
converges. Also, clustering approaches like k-means gen-
erate synthetic prototypes as cluster representatives and
thus the cluster centers are not themselves samples; in
contrast, affinity propagation picks actual samples as ex-
emplars to represent a cluster center. Because they are
actual samples, the set of exemplars produced by the ap-
proach can be viewed as a maximally, diverse subset of
samples for the entire set. We term these as ‘rank 1’ ex-
emplars. Figure 9 shows the 33 rank-1 exemplars that were
inferred from the original set of 540 samples. The figure
shows how characteristics like shape, extent, and orienta-
tion of the holes play a part in defining diversity across
the samples. To further augment the set of exemplars in
order to increase the number of training samples, we iter-
atively identify additional samples from the remaining set
such that they are also maximally diverse – we term the
kth such iteration as the rank-k exemplar set.

In order to generate the augmented sets, in each itera-

tion we extract one additional sample from each cluster,
which is also farthest (in terms of its affinity value) from
the exemplar samples for that cluster and the other ex-
emplars in the cluster selected in previous iterations. We
also make sure the chosen exemplar is beyond a certain
distance-threshold from the nearest exemplar to preserve
diversity. The iterations stop when there as no more new
exemplars that meet the criteria. To illustrate the extent
to which the chosen samples are both maximal and di-
verse, we plot all the samples in a 2D space constructed
using multidimensional scaling (MDS) as shown in Fig. 10.

The red points indicate the 106 samples that were chosen
as maximally diverse by our approach. As can be seen,
the approach robustly picks out outlier samples as well as
keeps these samples as far away from each other in this
2D Cartesian space as possible. In general, no portion of
the overall space of designs is underrepresented, but no
region is distinctly over-represented either, which is the
desirable outcome we were targeting. Finally, given that
the newly generated designs are not symmetric about the
x-axis, we augment the set of 106 designs with versions of
the designs that are rotated 180 degrees along the z-axis,
so that the surrogate can deal with both versions of the
samples. This leads to the selection of a training sample
set of 244 samples, which was used to train the surrogate
model.

4.5. Training Data Evaluation

Training data evaluation involves simulating the addi-
tive process for each training sample (i.e., channel design)
and estimating the crack index field across the 3D coupon
volume. As mentioned earlier, the inherent strain based
methodology is used to simulate the build process. The
part is placed at the center of the build plate and the
build plate is constrained at four locations in all degrees
of freedom to simulate the bolting boundary condition.
The calibrated inherent strains mentioned in Section 4.2
are applied and each layer is deposited sequentially from
bottom to top. The build process is simulated using com-
mercially available Simufact Additive 2020 FP1 software
package [66]. Given that we need to evaluate 244 input
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(a) Thermal problem (b) Training data at various volume fractions for the symmetric thermal problem with self-supporting constraint

(c) Hydrostatic pressure
problem

(d) Training data at various volume fractions the hydrostatic pressure problem

(e) Asymmetric thermal
problem

(f) Training data at various volume fractions for the asymmetric thermal problem

(g) Four-segment loading
problem

(h) Training data generated with various values of the TO parameters summarized in the Table 1.

Figure 7: Training data was generated for different boundary conditions, volume fractions, and design and manufacturing constraints.

geometries to train the surrogate, we approximated the
evaluation process, to make it time-efficient, as follows:
the sample evaluation using the simulation is done at a
much lower resolution (bringing down the run-time of each
sample to only 4 hours), and then trilinear interpolation
is used to reconstruct the crack index field produced by
the coarse simulation into the equivalent field at the de-
sired resolution. Figure 11 shows 3 samples for which the
low resolution crack index field produced by the simulator
is compared with the equivalent high resolution field pro-
duced using interpolation. It shows that the interpolation

while it visibly leads to smoothing, still retains the critical
spatial characteristics of the signal.

As an additional check on this approach, 12 geometries
were simulated, at both low and high resolution to validate
the outcomes. This is shown in Fig. 12 and it shows that
the interpolation retains the original signal with a reason-
able fidelity. Since we had the high resolution ground truth
for these 12 geometries from simulation, we further esti-
mated MRE to compare the two signals and estimated it
to be 22% (or 78% accuracy). For the 244 geometries gen-
erated for surrogate development, all samples were evalu-
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Figure 8: A workflow for selection of maximally diverse subset of design samples from a given set.

Figure 9: The 33, rank-1 exemplars using Affinity Propagation on
540 design samples.

Figure 10: Multidimensional Scaling plot for all 540 designs, with
red points showing the maximally diverse subset of designs that were
chosen to be in the training data.

ated using the process simulator at low resolution (which
required 4 hours of high performance computing run time
per geometry). The crack index fields produced by the
simulator were then upsampled by interpolating to the
higher resolution field for use in surrogate training.

Figure 11: Comparison of the low resolution field produced by simu-
lation with the corresponding high resolution field constructed using
interpolation (3 examples).

Figure 12: Comparison of the high resolution field produced di-
rectly by simulation with the corresponding high resolution field con-
structed using interpolation from a low resolution simulation of the
same field (3 examples).

4.6. 3D Surrogate Model using Deep Learning: overview

In recent work [4], we presented early outcomes leverag-
ing deep convolutional neural networks (DCNN) as high
fidelity and time-efficient surrogates of the 3D crack in-
dex field. We applied the U-Net architecture [67] as the
baseline, expanding the standard application of this ar-
chitecture for 2D segmentation to the estimation of the
full 3D, continuous valued, crack index field, as shown in
Fig. 13. The paper illustrated the primary challenge faced
by the standard U-Net architecture with L2-loss arising

9



from sparsity in critical values of the crack index - part
regions with high values of the crack index are often in a
much smaller minority of the overall volume of the dataset
used to train the surrogate. And we showed examples
where, the use of standard metrics of loss like L2-loss can
lead to a surrogate that only learns to reliably predict in
regions where the crack index values are from the likely val-
ues of the overall distribution, but ignores or poorly models
the rarer high values of crack index, which are critical to
the problem at hand. In response, our paper demonstrated

Figure 13: A 3D U-Net architecture for dense regression of the crack
index field (from [4]).

how the the idea of Attention, as inspired from cognitive
attention as seen in humans, and predominantly applied in
the natural language processing community [68, 69], leads
to promising outcomes for the crack index prediction prob-
lem. We explored how augmenting the U-Net architecture
with two alternative attention mechanisms (see Fig. 14)
helps address the issue as well as improve the overall ac-
curacy of estimation.

One variant of the Attention mechanism, shown in
Fig. 14(a), is inspired from [5] where the spatial atten-
tion map is computed on the bottleneck connecting the
Encoder of the U-Net to the Decoder: the gating op-
eration for this Spatial Attention Gate entails applying
average-pooling and max-pooling operations on the bottle-
neck features, concatenating them and then using a single
7 × 7 Sigmoid-activated, convolution kernel to construct
the spatial attention map. The attention map acts as spa-
tial weights to help focus on the regions most relevant for
accurate estimation of the crack index, by emphasizing or
suppressing appropriate features from the bottleneck. The
second approach, shown in Fig. 14(b), is inspired from [70]
in which an additive attention gating mechanism is en-
coded in the skip connections, allowing for attention-based
coefficients to be learned specific to sub-regions in the im-
age at different spatial scales. In other words, the gat-
ing signal helps amplify critical, task-specific, and spatial
features in the input at multiple scales, that is already
encoded in the skip connections in a U-Net. While both

the Attention-based instantiations were shown to improve
mean voxelwise prediction accuracy compared to the base-
line U-Net model, the AG-Unet model was shown to cap-
ture salient aspects of the crack index distribution rela-
tively better as well as produce more reliable estimates of
the rare, but high values of the crack index which is criti-
cal since these regions of the part are the ones most prone
to cracking. The primary reason for this was further il-
lustrated by looking at the attention coefficients that are
created by the AG-Unet during the prediction task.

Figure 15 shows the attention coefficients generated at
each of the 3 skip connections of the AG-Unet architec-
ture (rows 2, 3, and 4) for 4 design samples; the topmost
row shows the actual crack index value. The figure shows
more clearly how these coefficients spatially weight all the
feature maps at each skip connection so as to emphasize
portions of the feature-maps in regions of the part where
dominant geometric features are visible at that scale. Fi-
nally, attention mechanisms can help regularize the learn-
ing process to construct the right semantic representation
and put the network parameters to use in learning the
right function that is also semantically aligned with the
task at hand. More specifically, the presence of geomet-
ric features semantically signal the existence of interesting
behaviour of the crack index near those features; atten-
tion mechanisms help reinforce the need for the network
to learn those crack index values better.

In this paper, we explore the same 3 architectures, but
trained on a larger and more diverse training dataset com-
pared to what was use to generate the outcomes in [4].

4.7. 3D Surrogate Model using Deep Learning: outcomes

As described in the previous section, we consider the 3D
U-Net architecture and its variants for voxel-wise regres-
sion that makes use of MaxPooling for feature abstraction.
The high computational cost of training a 3D U-Net is
addressed by conducting the training on an NVIDIA DGX
machine configured with 8, P100 GPUs. Table 1 shows
some details of the training regimen, that was used to train
all 3 surrogates.

While L2-loss was used for training the surrogate and for
measuring its performance, its values are in the units of
the quantity being measured, in this case the crack index.
Therefore, we make use of a normalized metric called Mean
Relative Error (MRE) to additionally report performance
of the model in terms of its mean voxelwise accuracy:

MRE =
1

n

n∑
j=1

|yj − ŷj |
ε+max(|yj |, |ŷj |)

MRE captures the relative error rate in percent units when
comparing deviation of predictions from ground truth, and
thus expressed within the standard range between 0 and
1, which is desirable. Table 2 compares the relative per-
formance of the 3 surrogates in terms of both MRE and
Accuracy for each of the 3 surrogates.
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Figure 14: Two alternate Attention mechanisms ([5, 70]) to augment the U-Net architecture as explored in [4].

Figure 15: Multi-scale features for the crack index captured by Attention coefficients in the skip connections of AG-Unet from [4].

Figure 16: Predictions of the AG-Unet surrogate for 2 test samples and comparison with the ground truth crack index field.
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Table 1: Training regimen characteristics for the surrogates

Training Parameter Description
Architecture 3D U-Net, 3× 3, ReLU,

1-32-64-128-256-128-64-32-1
Feature Abstraction Max Pooling
Output Layer Activation Linear
Loss Function L2/MSE
Target Raw crack index values
Optimizer ADAM, init-lr=1e-4
Number of samples 240
Batch Normalization No
Dropout No
Input sample 100× 60× 178 volume
Train/Test split 192 / 48 samples
Batch Size per GPU 8
#epochs 150, with early stopping

check
Early Stopping val-loss,

min-delta=1e-9,
patience=5

Initialization Glorot-uniform
Compute Parallel 4-GPU

Table 2: Performance comparison

Surrogate Description %MRE %Acc.
Standard 3D U-Net for regression 14.13 85.8

U-Net w/ Spatial Attention 13.75 86.2

U-Net w/ Attention Gates on skip 13.40 86.6

(a) (b)

(c) (d)

Figure 17: MSSI field inside the channel (top) and its gradient field
with respect to maximum value (bottom).

Figure 18: MSSI-aware TO with NN-based surrogate model. The
MSSI sensitivity field is computed using automatic differentiation.

The metrics in the table quantify the mean relative error
(or accuracy) averaged across all voxels in the set of the
48 test samples. The numbers indicate that both baseline
U-Net architectures with attention mechanisms perform
better than the U-Net without any augmentation, with
the AG-Unet providing the best performance. Figure 16
shows predictions of the AG-Unet for 2 of the test samples,
illustrated through the 3 orthographic projections of the
corresponding middle slices of the sample.

4.8. TO Formulation and Sensitivity Analysis

In this section, we will describe the multi-objective
PATO formulation and the sensitivity analysis for com-
puting the gradients by incorporating the AG-Unet sur-
rogate model for MSSI prediction. Mathematically, the
crack-free TO problem considering the performance ϕ and
MSSI cracking index ζ is formulated as:

minimize
ρ

(1− w)ϕ(u) + wζ(ρ) (1a)

s.t. K(ρ)u(ρ) = f (1b)

V (ρ)

Vtarget
− 1 ≤ 0 (1c)

0 ≤ ρ ≤ 1 (1d)

0 ≤ w ≤ 1 (1e)

where w and ρ are the weighting factor and the pseudo-
density design variable, respectively. u denotes the state
variable that satisfies the state equation of (1b) solved us-
ing finite element analysis (FEA), where K is the stiffness
matrix and f is the external load vector. Equation (1c) is
the volume constraint, where Vtarget is the target volume
fraction.

Equation 1 can be expressed as minimization of the fol-
lowing Lagrangian:

L(ρ) := (1− w)ϕ(u) + wζ(ρ)

+ λ1(
V (ρ)

Vtarget
− 1) + λT

2

(
K(ρ)u(ρ)− f

)
. (2)

Using the prime symbol (·)′ to represent differentiation of
a function with respect to the design variable ρ, we obtain
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Optimized Designs at Different Volume Fractions 

No 
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Terminate

Figure 19: Optimized designs at different volume fraction for TO without considering producibility (top) and the proposed PATO (bottom).

(via chain rule):

L′(ρ) = (1− w)ϕ′(u) + wζ ′(ρ)

+ λ1
V ′(ρ)

Vtarget
+ λT

2

(
K(ρ)u(ρ)

)′
, (3)

= wζ ′(ρ) +
(

(1− w)[
∂ϕ

∂u
] + λT

2 K(ρ)
)
u′(ρ)

+ λ1
V ′(ρ)

Vtarget
+ λT

2 K
′(ρ)u(ρ). (4)

Since computing [u′ρ] is computationally prohibitive, [λ2]
is chosen as the solution to the adjoint problem [6, 7] which
reduces (4) to:

L′(ρ) = wζ ′(ρ) + λT
2 K
′(ρ)u(ρ) + λ1

V ′(ρ)

Vtarget
, (5)

if λ2 := −(1− w)K−1(ρ)[
∂ϕ

∂u
].

For compliance minimization problems, since ϕ = uT f ,

the [
∂ϕ

∂u
] = f and λT2 = (1− w)uT (ρ). Thus,

L′(ρ) = wζ ′(ρ) + (1− w)uT(ρ)K′(ρ)u(ρ)

+ λ1
1

Vtarget
. (6)

To compute the maximum MSSI sensitivity field, we ex-
tend the surrogate model using a max pooling layer with
a pool size as large as the domain size. This essentially al-
lows the surrogate model to predict the peak MSSI value
rather than the full MSSI field. Subsequently, we use au-
tomatic differentiation capabilities in TensorFlowTM [71]

to compute the change of the output of the NN (i.e., max-
imum MSSI) with respect to hypothetical change in the in-
put design variable (i.e., pseudo-density). Figure 17 illus-
trates the predicted MSSI field and the gradient field with
respect to maximum MSSI value in the design domain,
here the No-Go channel. Figure 18 shows an overview of
the proposed MSSI-aware TO framework.

5. Results

In this section, we demonstrate the effectiveness of our
proposed method in generating MSSI-aware optimized de-
signs, including experimental validation. The computa-
tions are on a desktop machine with Intel Corei7-7820X
CPU with 8 processors running at 4.5 GHz, 32 GB of
host memory, and an NVIDIA GeForce GTX 1080 GPU
with 2,560 CUDA cores and 8 GB of device memory.
At every TO iteration, the design variables are updated
using the Method of Moving Asymptotes (MMA) [72],
where the problem is approximated by a number of con-
vex sub-problems which are solved using the Interior Point
Method [73].

Figure 19 illustrates the optimized designs at different
volume fractions for TO without considering producibility
(w = 0.0) and the proposed PATO (w = 0.95) while min-
imizing thermal compliance under the loading condition
of Fig. 7a. The PATO designs are qualitatively different,
where material is removed farther from the notch to reduce
the maximum MSSI value. Figure 20 shows the maximum
MSSI values at different volume fractions. As expected,
PATO designs consistently have lower maximum MSSI val-
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Figure 20: Maximum MSSI values at different volume fractions.

ues. Figure 21 illustrates the thermal compliance at dif-
ferent volume fractions. As expected, the solutions found
with PATO have higher thermal compliance values com-
pared to those obtained without considering producibility.
Thus, there is a trade-off between two competing objec-
tives, namely performance and producibility.

Figure 21: Thermal compliance at different volume fractions.

Figure 22 shows a comparison in MSSI values between
the baseline No-Go coupon and the PATO design discov-
ered by application of our approach. It can be seen that the
MSSI values are uniformly low across the channel as well as
the overall coupon geometry for the optimized design, rel-
ative to values seen with the Baseline No-Go coupon. We
also conducted experimental validation of our outcome by
printing multiple coupons of the optimal design discovered
by our approach. It is clear from the figure (bottom right),
and based on a thorough inspection, that this coupon has
no cracks either in the channel or any other region of the
coupon, further validating that our approach converges to
a design that is truly crack free.

6. Conclusions

In this paper, we explored design manufacturability as it
pertains to designs that crack upon additive manufactur-
ing - a problem that is a challenge in the industry today for

Figure 22: Comparing the MSSI values between the (a) Baseline No-
Go coupon and (b) the optimal design discovered by PATO, along
with pictures of experimental validation of the optimal design show-
ing no cracks in corresponding printed coupons.

laser powder bed fusion of Ni-based superalloys used in hot
gas path gas turbine components. We introduced a frame-
work for producibility-aware topology optimization, called
PATO, and demonstrated its ability to discover designs
that are optimal from multiphysics perspective, while also
ensuring their crack-free manufacturing. We showed the
MSSI to be a reliable crack index, and how a deep convolu-
tional neural network, with an Attention-based, 3D U-Net
architecture, can be trained as a reliable surrogate of the
time-complex build process simulation and accurately pre-
dict MSSI, given the geometry. Further, we showed how
we employed automatic differentiation to directly compute
the gradients of maximum MSSI with respect to the input
design variables, using the surrogate, and augmented it
with the performance-based sensitivity field in a standard
topology optimization engine, to effectively optimize a de-
sign while considering the trade-off between weight, man-
ufacturability, and multiphysics performance. We demon-
strated the effectiveness of our PATO framework through
benchmark studies in 3D as well as experimental valida-
tion. More specifically, the design suggested by PATO not
only shows reduced values of MSSI, but this coupon when
built did not have a crack, thereby validating the efficacy
of our PATO framework to discover crack-free designs.
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